
Hyohak Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1137781/publications.pdf Version: 2024-02-01

HVOHAK SONC

#	Article	IF	CITATIONS
1	Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, 2006, 39, 352-361.	3.2	669
2	Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation. Applied and Environmental Microbiology, 2012, 78, 1416-1423.	3.1	213
3	Microbial production of 2,3-butanediol for industrial applications. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1583-1601.	3.0	107
4	Effects of dissolved CO2 levels on the growth ofMannheimia succiniciproducens and succinic acid production. Biotechnology and Bioengineering, 2007, 98, 1296-1304.	3.3	104
5	Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Applied Microbiology and Biotechnology, 2012, 95, 461-469.	3.6	88
6	Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochemical Engineering Journal, 2008, 40, 107-115.	3.6	86
7	Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. Journal of Biotechnology, 2007, 132, 445-452.	3.8	71
8	Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Applied Microbiology and Biotechnology, 2008, 79, 263-272.	3.6	63
9	Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. Journal of Bioscience and Bioengineering, 2013, 116, 186-192.	2.2	53
10	Highly selective production of succinic acid by metabolically engineered <i>Mannheimia succiniciproducens</i> and its efficient purification. Biotechnology and Bioengineering, 2016, 113, 2168-2177.	3.3	53
11	Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metabolic Engineering, 2016, 38, 409-417.	7.0	53
12	Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Biochemical Engineering Journal, 2010, 53, 71-76.	3.6	45
13	In silico aided metabolic engineering of <i>Klebsiella oxytoca</i> and fermentation optimization for enhanced 2,3-butanediol production. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1057-1066.	3.0	42
14	2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation. Journal of Bioscience and Bioengineering, 2014, 117, 464-470.	2.2	41
15	Isolation and characterization of the new Klebsiella pneumoniae J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation. Biotechnology and Bioprocess Engineering, 2011, 16, 1134-1143.	2.6	33
16	Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol. Bioprocess and Biosystems Engineering, 2012, 35, 1081-1088.	3.4	33
17	2,3-Butanediol dehydration catalyzed by silica-supported sodium phosphates. Applied Catalysis A: General, 2016, 511, 156-167.	4.3	33
18	Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresource Technology, 2016, 214, 432-440.	9.6	31

HYOHAK SONG

#	Article	IF	CITATIONS
19	Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol. Journal of Microbiology and Biotechnology, 2018, 28, 409-417.	2.1	27
20	Enhanced production of (<i>R</i> , <i>R</i>)-2,3-butanediol by metabolically engineered <i>Klebsiella oxytoca</i> . Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1419-1425.	3.0	26
21	Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Microbial Cell Factories, 2013, 12, 20.	4.0	24
22	Kinetic modeling of substrate and product inhibition for 2,3-butanediol production by Klebsiella oxytoca. Biochemical Engineering Journal, 2016, 114, 94-100.	3.6	24
23	Metabolic engineering of <i>Klebsiella pneumoniae</i> based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 431-441.	3.0	18
24	Characterization of ethanol fermentation waste and its application to lactic acid production by Lactobacillus paracasei. Bioprocess and Biosystems Engineering, 2013, 36, 547-554.	3.4	14
25	Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnology Letters, 2016, 38, 975-982.	2.2	13
26	Engineering a newly isolated <i>Bacillus licheniformis</i> strain for the production of (2R,3R)-butanediol. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 97-108.	3.0	12
27	Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 2013, 18, 266-271.	2.6	10
28	<scp>CRISPRâ€Cas9</scp> mediated engineering of <i>Bacillus licheniformis</i> for industrial production of (<scp>2R</scp> , <scp>3S</scp>)â€butanediol. Biotechnology Progress, 2021, 37, e3072.	2.6	9
29	Biological Control Efficacy and Action Mechanism of Klebsiella pneumoniae JCK-2201 Producing Meso-2,3-Butanediol Against Tomato Bacterial Wilt. Frontiers in Microbiology, 0, 13, .	3.5	7
30	CRISPR-Cas9 mediated metabolic engineering of a mucoid Bacillus licheniformis isolate for mass production of 2,3-butanediol. Biochemical Engineering Journal, 2021, 175, 108141.	3.6	6
31	Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress. Journal of Microbiology and Biotechnology, 2022, 32, 582-593.	2.1	4
32	Simultaneous and selective production of exopolymers and polyols by metabolically engineered Bacillus licheniformis strains. Biochemical Engineering Journal, 2022, 181, 108381.	3.6	1