Mario Lebendiker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11377382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein purification strategies must consider downstream applications and individual biological characteristics. Microbial Cell Factories, 2022, 21, 52.	4.0	5
2	Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey. European Biophysics Journal, 2021, 50, 453-460.	2.2	6
3	Quality control of protein reagents for the improvement of research data reproducibility. Nature Communications, 2021, 12, 2795.	12.8	25
4	Expression, purification and crystallization of CLK1 kinase – A potential target for antiviral therapy. Protein Expression and Purification, 2020, 176, 105742.	1.3	6
5	Coupling Multi Angle Light Scattering to Ion Exchange chromatography (IEX-MALS) for protein characterization. Scientific Reports, 2018, 8, 6907.	3.3	39
6	Purification of Proteins Fused to Maltose-Binding Protein. Methods in Molecular Biology, 2017, 1485, 257-273.	0.9	13
7	The vapB–vapC Operon of Acidovorax citrulli Functions as a Bona-fide Toxin–Antitoxin Module. Frontiers in Microbiology, 2016, 6, 1499.	3.5	21
8	Differential effects of zinc binding on structured and disordered regions in the multidomain STIL protein. Chemical Science, 2016, 7, 4140-4147.	7.4	4
9	Highly homologous proteins exert opposite biological activities by using different interaction interfaces. Scientific Reports, 2015, 5, 11629.	3.3	10
10	Production of proneâ€ŧoâ€aggregate proteins. FEBS Letters, 2014, 588, 236-246.	2.8	116
11	The STIL protein contains intrinsically disordered regions that mediate its protein–protein interactions. Chemical Communications, 2014, 50, 5245-5247.	4.1	10
12	The disordered region of Arabidopsis VIP1 binds the Agrobacterium VirE2 protein outside its DNA-binding site. Protein Engineering, Design and Selection, 2014, 27, 439-446.	2.1	4
13	Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins. PLoS ONE, 2012, 7, e38060.	2.5	21
14	Purification of Proteins Fused to Maltose-Binding Protein. Methods in Molecular Biology, 2011, 681, 281-293.	0.9	31
15	Mechanism of the Interaction between the Intrinsically Disordered C-Terminus of the Pro-Apoptotic ARTS Protein and the Bir3 Domain of XIAP. PLoS ONE, 2011, 6, e24655.	2.5	19
16	Chemical Synthesis and Expression of the HIVâ \in I Rev Protein. ChemBioChem, 2011, 12, 1097-1104.	2.6	68
17	The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Engineering, Design and Selection, 2009, 22, 281-287.	2.1	29
18	A cyanobacterial AbrBâ€like protein affects the apparent photosynthetic affinity for CO ₂ by modulating lowâ€CO ₂ â€induced gene expression. Environmental Microbiology, 2009, 11, 927-936.	3.8	80

MARIO LEBENDIKER

#	Article	IF	CITATIONS
19	An AbrBâ€like protein might be involved in the regulation of cylindrospermopsin production by <i>Aphanizomenon ovalisporum</i> . Environmental Microbiology, 2008, 10, 988-999.	3.8	51
20	The Structure and Interactions of the Proline-rich Domain of ASPP2. Journal of Biological Chemistry, 2008, 283, 18990-18999.	3.4	40
21	Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12277-12282.	7.1	49
22	Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8316-8321.	7.1	177
23	Scanning Cysteine Accessibility of EmrE, an H+-coupled Multidrug Transporter from Escherichia coli, Reveals a Hydrophobic Pathway for Solutes. Journal of Biological Chemistry, 1999, 274, 19480-19486.	3.4	94
24	NMR investigation of the multidrug transporter EmrE, an integral membrane protein. FEBS Journal, 1998, 254, 610-619.	0.2	86
25	Determining the Secondary Structure and Orientation of EmrE, a Multi-Drug Transporter, Indicates a Transmembrane Four-Helix Bundle. Biochemistry, 1996, 35, 7233-7238.	2.5	101
26	ldentification of Residues in the Translocation Pathway of EmrE, a Multidrug Antiporter from Escherichia coli. Journal of Biological Chemistry, 1996, 271, 21193-21199.	3.4	27
27	Negative Dominance Studies Demonstrate the Oligomeric Structure of EmrE, a Multidrug Antiporter from Escherichia coli. Journal of Biological Chemistry, 1996, 271, 31044-31048.	3.4	109
28	EmrE, an Escherichia coli 12-kDa Multidrug Transporter, Exchanges Toxic Cations and H+ and Is Soluble in Organic Solvents. Journal of Biological Chemistry, 1995, 270, 6856-6863.	3.4	283