
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11376108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Baseline Functional Connectivity in Resting State Networks Associated with Depression and Remission Status after 16ÂWeeks of Pharmacotherapy: A CAN-BIND Report. Cerebral Cortex, 2022, 32, 1223-1243.	2.9	6
2	Perspectives on the Clinical Use of Pharmacogenetic Testing in Late-Life Mental Healthcare: A Survey of the American Association of Geriatric Psychiatry Membership. American Journal of Geriatric Psychiatry, 2022, 30, 560-571.	1.2	3
3	Gene-drug pairings for antidepressants and antipsychotics: level of evidence and clinical application. Molecular Psychiatry, 2022, 27, 593-605.	7.9	13
4	Encountering Pharmacogenetic Test Results in the Psychiatric Clinic. Canadian Journal of Psychiatry, 2022, 67, 95-100.	1.9	4
5	Common Data Elements to Facilitate Sharing and Re-use of Participant-Level Data: Assessment of Psychiatric Comorbidity Across Brain Disorders. Frontiers in Psychiatry, 2022, 13, 816465.	2.6	3
6	Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial. Translational Psychiatry, 2022, 12, 101.	4.8	17
7	Clinical Impact of Functional CYP2C19 and CYP2D6 Gene Variants on Treatment with Antidepressants in Young People with Depression: A Danish Cohort Study. Pharmaceuticals, 2022, 15, 870.	3.8	10
8	Structural covariance pattern abnormalities of insula in major depressive disorder: A CAN-BIND study report. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110194.	4.8	11
9	Pharmacogenomic Studies in Intellectual Disabilities and Autism Spectrum Disorder: A Systematic Review. Canadian Journal of Psychiatry, 2021, 66, 1019-1041.	1.9	4
10	Schizophreniaâ€associated gene dysbindinâ€1 and tardive dyskinesia. Drug Development Research, 2021, 82, 678-684.	2.9	5
11	<i>CYP2D6</i> and Antipsychotic Treatment Outcomes in Children and Youth: A Systematic Review. Journal of Child and Adolescent Psychopharmacology, 2021, 31, 33-45.	1.3	15
12	Pharmacogenetic/Pharmacogenomic Tests for Treatment Prediction in Depression. Advances in Experimental Medicine and Biology, 2021, 1305, 231-255.	1.6	3
13	Genome-wide analysis suggests the importance of vascular processes and neuroinflammation in late-life antidepressant response. Translational Psychiatry, 2021, 11, 127.	4.8	22
14	Multisite Comparison of MRI Defacing Software Across Multiple Cohorts. Frontiers in Psychiatry, 2021, 12, 617997.	2.6	32
15	Clinical Pharmacogenetics Implementation Consortium Guideline for <i>CYP2D6</i> , <i>OPRM1</i> , and <i>COMT</i> Genotypes and Select Opioid Therapy. Clinical Pharmacology and Therapeutics, 2021, 110, 888-896.	4.7	212
16	The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients, 2021, 13, 1152.	4.1	25
17	Cognitive Outcomes with Sequential Escitalopram Monotherapy and Adjunctive Aripiprazole Treatment in Major Depressive Disorder: A Canadian Biomarker Integration Network in Depression (CAN-BIND-1) Report. CNS Drugs, 2021, 35, 291-304.	5.9	4
18	Impacts on Quality of Life with Escitalopram Monotherapy and Aripiprazole Augmentation in Patients with Major Depressive Disorder: A CAN-BIND Report. Pharmacopsychiatry, 2021, 54, 225-231.	3.3	1

DANIEL J MÃ¹/4LLER

#	Article	IF	CITATIONS
19	Predictors of Quality of Life Improvement with Escitalopram and Adjunctive Aripiprazole in Patients with Major Depressive Disorder: A CAN-BIND Study Report. CNS Drugs, 2021, 35, 439-450.	5.9	4
20	Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1. PLoS ONE, 2021, 16, e0253023.	2.5	4
21	Economic evaluation in psychiatric pharmacogenomics: a systematic review. Pharmacogenomics Journal, 2021, 21, 533-541.	2.0	28
22	Exploring brain connectivity changes in major depressive disorder using <scp>functionalâ€structural</scp> data fusion: A CANâ€BINDâ€1 study. Human Brain Mapping, 2021, 42, 4940-4957.	3.6	8
23	Changes in RNA expression levels during antidepressant treatment: a systematic review. Journal of Neural Transmission, 2021, 128, 1461-1477.	2.8	1
24	Pharmacogeneticsâ \in Guided Advances in Antipsychotic Treatment. Clinical Pharmacology and Therapeutics, 2021, 110, 582-588.	4.7	12
25	Association between the expression of IncRNA BASP-AS1 and volume of right hippocampal tail moderated by episode duration in major depressive disorder: a CAN-BIND 1 report. Translational Psychiatry, 2021, 11, 469.	4.8	1
26	Reviewing pharmacogenetics to advance precision medicine for opioids. Biomedicine and Pharmacotherapy, 2021, 142, 112060.	5.6	14
27	Hypothalamus volume and DNA methylation of stress axis genes in major depressive disorder: A CAN-BIND study report. Psychoneuroendocrinology, 2021, 132, 105348.	2.7	8
28	Review and Consensus on Pharmacogenomic Testing in Psychiatry. Pharmacopsychiatry, 2021, 54, 5-17.	3.3	96
29	Frequencies of Genetic Polymorphisms of Clinically Relevant Gene-Drug Pairs in a German Psychiatric Inpatient Population. Pharmacopsychiatry, 2021, 54, 81-89.	3.3	7
30	Accelerated brain aging in major depressive disorder and antidepressant treatment response: A CAN-BIND report. NeuroImage: Clinical, 2021, 32, 102864.	2.7	13
31	Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis. Psychological Medicine, 2021, 51, 2742-2751.	4.5	38
32	Serotonin Transporter Genetic Variation and Antidepressant Response and Tolerability: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 2021, 11, 1334.	2.5	16
33	Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology, 2020, 79, 5-12.	1.9	11
34	Childhood maltreatment and cognitive functioning in patients with major depressive disorder: a CAN-BIND-1 report. Psychological Medicine, 2020, 50, 2536-2547.	4.5	17
35	From the Origins of Pharmacogenetics to First Applications in Psychiatry. Pharmacopsychiatry, 2020, 53, 155-161.	3.3	17
36	Opportunities and challenges of implementation models of pharmacogenomics in clinical practice. , 2020, , 449-457.		0

#	Article	IF	CITATIONS
37	Genetic testing in psychiatry: State of the evidence. , 2020, , 437-448.		о
38	Association Between Side Effects and Blood microRNA Expression Levels and Their Targeted Pathways in Patients With Major Depressive Disorder Treated by a Selective Serotonin Reuptake Inhibitor, Escitalopram: A CAN-BIND-1 Report. International Journal of Neuropsychopharmacology, 2020, 23, 88-95.	2.1	12
39	Escitalopram ameliorates differences in neural activity between healthy comparison and major depressive disorder groups on an fMRI Emotional conflict task: A CAN-BIND-1 study. Journal of Affective Disorders, 2020, 264, 414-424.	4.1	6
40	Reliability of a functional magnetic resonance imaging task of emotional conflict in healthy participants. Human Brain Mapping, 2020, 41, 1400-1415.	3.6	7
41	Pharmacogenetics in Psychiatry: An Update on Clinical Usability. Frontiers in Pharmacology, 2020, 11, 575540.	3.5	46
42	Liver enzyme <i>CYP2D6</i> gene and tardive dyskinesia. Pharmacogenomics, 2020, 21, 1065-1072.	1.3	4
43	Regulation of melanocortin-4-receptor (MC4R) expression by SNP rs17066842 is dependent on glucose concentration. European Neuropsychopharmacology, 2020, 37, 39-48.	0.7	3
44	Pharmacogenetics in Psychiatry. Pharmacopsychiatry, 2020, 53, 153-154.	3.3	2
45	Pharmacogenetic Testing Options Relevant to Psychiatry in Canada: Options de tests pharmacogénétiques pertinents en psychiatrie au Canada. Canadian Journal of Psychiatry, 2020, 65, 521-530.	1.9	32
46	Validation study of microRNAs previously associated with antidepressant response in older adults treated for late-life depression with venlafaxine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 100, 109867.	4.8	8
47	Pharmacogenetic Implications for Antidepressant Pharmacotherapy in Late-Life Depression: A Systematic Review of the Literature for Response, Pharmacokinetics and Adverse Drug Reactions. American Journal of Geriatric Psychiatry, 2020, 28, 609-629.	1.2	18
48	Association between the -2548G/A polymorphism of the leptin gene and antipsychotic-induced weight gain: Analysis of the CATIE sample and meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 102, 109952.	4.8	8
49	THE DEPRESSION INVENTORY DEVELOPMENT SCALE: Assessment of Psychometric Properties Using Classical and Modern Measurement Theory in a CAN-BIND Trial. Innovations in Clinical Neuroscience, 2020, 17, 30-40.	0.1	6
50	Reduced accuracy accompanied by reduced neural activity during the performance of an emotional conflict task by unmedicated patients with major depression: A CAN-BIND fMRI study. Journal of Affective Disorders, 2019, 257, 765-773.	4.1	20
51	Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Translational Psychiatry, 2019, 9, 254.	4.8	33
52	Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. Journal of Psychiatric Research, 2019, 119, 33-47.	3.1	19
53	Genome-wide association study on antipsychotic-induced weight gain in Europeans and African-Americans. Schizophrenia Research, 2019, 212, 204-212.	2.0	15
54	New insights into tardive dyskinesia genetics: Implementation of whole-exome sequencing approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109659.	4.8	9

#	Article	IF	CITATIONS
55	The comingâ€ofâ€age of pharmacogenetic testing in clinical psychiatry. Psychiatry and Clinical Neurosciences, 2019, 73, 203-203.	1.8	1
56	Navigating the Labyrinth of Pharmacogenetic Testing: A Guide to Test Selection. Clinical Pharmacology and Therapeutics, 2019, 106, 309-312.	4.7	38
57	Genome-Wide Association Study of Sleep Disturbances in Depressive Disorders. Molecular Neuropsychiatry, 2019, 5, 34-43.	2.9	1
58	Association Study of the Complement Component C4 Gene in Tardive Dyskinesia. Frontiers in Pharmacology, 2019, 10, 1339.	3.5	11
59	Early change in reward and punishment sensitivity as a predictor of response to antidepressant treatment for major depressive disorder: a CAN-BIND-1 report. Psychological Medicine, 2019, 49, 1629-1638.	4.5	22
60	Towards the integration of pharmacogenetics in psychiatry. Current Opinion in Psychiatry, 2019, 32, 7-15.	6.3	103
61	Genetic validation study of protein tyrosine phosphatase receptor type D (PTPRD) gene variants and risk for antipsychotic-induced weight gain. Journal of Neural Transmission, 2019, 126, 27-33.	2.8	13
62	Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. Molecular Neuropsychiatry, 2019, 5, 1-26.	2.9	30
63	Genetic testing for CYP2D6 and CYP2C19 suggests improved outcome for antidepressant and antipsychotic medication. Psychiatry Research, 2019, 279, 111-115.	3.3	33
64	Genetic study of neuregulin 1 and receptor tyrosine-protein kinase erbB-4 in tardive dyskinesia. World Journal of Biological Psychiatry, 2019, 20, 91-95.	2.6	8
65	The Canadian Biomarker Integration Network in Depression (CAN-BIND): magnetic resonance imaging protocols. Journal of Psychiatry and Neuroscience, 2019, 44, 223-236.	2.4	37
66	Symptomatic and Functional Outcomes and Early Prediction of Response to Escitalopram Monotherapy and Sequential Adjunctive Aripiprazole Therapy in Patients With Major Depressive Disorder. Journal of Clinical Psychiatry, 2019, 80, .	2.2	61
67	Predicting Worsening Suicidal Ideation With Clinical Features and Peripheral Expression of Messenger RNA and MicroRNA During Antidepressant Treatment. Journal of Clinical Psychiatry, 2019, 80, .	2.2	16
68	Affectively Biased Competition: Sustained Attention is Tuned to Rewarding Expressions and is Not Modulated by Norepinephrine Receptor Gene Variant. Collabra: Psychology, 2019, 5, .	1.8	0
69	GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. Journal of Psychiatric Research, 2018, 99, 62-68.	3.1	60
70	Clinical Pharmacogenetics Implementation Consortium Guideline for <i>HLA</i> Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update. Clinical Pharmacology and Therapeutics, 2018, 103, 574-581.	4.7	211
71	Genetic testing as a supporting tool in prescribing psychiatric medication: Design and protocol of the IMPACT study. Journal of Psychiatric Research, 2018, 96, 265-272.	3.1	28
72	Impact of histamine receptors H1 and H3 polymorphisms on antipsychotic-induced weight gain. World Journal of Biological Psychiatry, 2018, 19, S97-S105.	2.6	11

#	Article	IF	CITATIONS
73	The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: A pilot study. Journal of Affective Disorders, 2018, 227, 542-549.	4.1	59
74	Pharmacogenetic guidelines and decision support tools for depression treatment: application to late-life. Pharmacogenomics, 2018, 19, 1269-1284.	1.3	16
75	Investigation of the HSPG2 Gene in Tardive Dyskinesia – New Data and Meta-Analysis. Frontiers in Pharmacology, 2018, 9, 974.	3.5	17
76	PharmGKB summary. Pharmacogenetics and Genomics, 2018, 28, 214-222.	1.5	57
77	Pharmacogenetics in Psychiatry: A Companion, Rather Than Competitor, to Protocol-Based Care. JAMA Psychiatry, 2018, 75, 1090.	11.0	5
78	Pharmacogenetic evaluation of a <i>DISP1</i> gene variant in antidepressant treatment of obsessive–compulsive disorder. Human Psychopharmacology, 2018, 33, e2659.	1.5	7
79	Association study of Disrupted-In-Schizophrenia-1 gene variants and tardive dyskinesia. Neuroscience Letters, 2018, 686, 17-22.	2.1	7
80	Rassen und Rassismen. , 2018, , 93-102.		0
81	Norepinephrine Transporter Gene Variants and Remission From Depression With Venlafaxine Treatment in Older Adults. American Journal of Psychiatry, 2017, 174, 468-475.	7.2	41
82	Association study between the neurexinâ€l gene and tardive dyskinesia. Human Psychopharmacology, 2017, 32, e2568.	1.5	9
83	MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nature Communications, 2017, 8, 15497.	12.8	144
84	Concordance between actual and pharmacogenetic predicted desvenlafaxine dose needed to achieve remission in major depressive disorder. Pharmacogenetics and Genomics, 2017, 27, 1-6.	1.5	12
85	A comprehensive analysis of mitochondrial genes variants and their association with antipsychotic-induced weight gain. Schizophrenia Research, 2017, 187, 67-73.	2.0	18
86	Verbal memory improvement in first-episode psychosis APOE- ε4 carriers: a pleiotropic effect?. Neuropsychiatric Disease and Treatment, 2017, Volume 13, 2945-2953.	2.2	6
87	The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Frontiers in Neuroscience, 2017, 11, 741.	2.8	78
88	Low-Dose Lithium Stabilizes Human Endothelial Barrier by Decreasing MLC Phosphorylation and Universally Augments Cholinergic Vasorelaxation Capacity in a Direct Manner. Frontiers in Physiology, 2016, 7, 593.	2.8	25
89	Molecular mechanisms in lithium-associated renal disease: a systematic review. International Urology and Nephrology, 2016, 48, 1843-1853.	1.4	18
90	Genetics of Common Antipsychotic-Induced Adverse Effects. Molecular Neuropsychiatry, 2016, 2, 61-78.	2.9	47

#	Article	IF	CITATIONS
91	A differential impact of lithium on endothelium-dependent but not on endothelium-independent vessel relaxation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 98-106.	4.8	23
92	Pharmacogenetics of tardive dyskinesia: an updated review of the literature. Pharmacogenomics, 2016, 17, 1339-1351.	1.3	38
93	Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder. Canadian Journal of Psychiatry, 2016, 61, 540-560.	1.9	746
94	Inflammatory Cytokines and Antipsychotic-Induced Weight Gain: Review and Clinical Implications. Molecular Neuropsychiatry, 2016, 2, 1-14.	2.9	47
95	Association Study of Serotonin 3 Receptor Subunit Gene Variants in Antipsychotic-Induced Weight Gain. Neuropsychobiology, 2016, 74, 169-175.	1.9	4
96	Genetic association analysis of Nâ€methylâ€ <scp>d</scp> â€aspartate receptor subunit gene <i>GRIN2B</i> and clinical response to clozapine. Human Psychopharmacology, 2016, 31, 121-134.	1.5	19
97	Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry, 2016, 16, 105.	2.6	114
98	Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis. International Journal of Neuropsychopharmacology, 2016, 19, pyv132.	2.1	50
99	Preliminary evidence for association of genome-wide significant <i>DRD2</i> schizophrenia risk variant with clozapine response. Pharmacogenomics, 2016, 17, 103-109.	1.3	37
100	Association of orexin receptor polymorphisms with antipsychotic-induced weight gain. World Journal of Biological Psychiatry, 2016, 17, 221-229.	2.6	24
101	Pharmacogenetics of Serious Antipsychotic Side Effects. , 2016, , 21-38.		0
102	Linking unfounded beliefs to genetic dopamine availability. Frontiers in Human Neuroscience, 2015, 9, 521.	2.0	12
103	Physicians' opinions following pharmacogenetic testing for psychotropic medication. Psychiatry Research, 2015, 229, 913-918.	3.3	51
104	Investigation of <i>TSPO</i> variants in schizophrenia and antipsychotic treatment outcomes. Pharmacogenomics, 2015, 16, 5-22.	1.3	15
105	The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain. World Journal of Biological Psychiatry, 2015, 16, 45-56.	2.6	28
106	Neurogenetic Variations in Norepinephrine Availability Enhance Perceptual Vividness. Journal of Neuroscience, 2015, 35, 6506-6516.	3.6	86
107	Genetic variation in CYP3A43 is associated with response to antipsychotic medication. Journal of Neural Transmission, 2015, 122, 29-34.	2.8	25
108	Personalized therapies in psychiatry: promises, pitfalls and perspectives. Journal of Neural Transmission, 2015, 122, 1-3.	2.8	9

#	Article	IF	CITATIONS
109	Association Study of GABAA α2 Receptor Subunit Gene Variants in Antipsychotic-Associated Weight Gain. Journal of Clinical Psychopharmacology, 2015, 35, 7-12.	1.4	18
110	Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for "Food Addiction�. Current Psychiatry Reports, 2015, 17, 96.	4.5	40
111	Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 1709-1731.	3.3	31
112	Genetic variation in <i>IL-1β, IL-2, IL-6, TSPO</i> and <i>BDNF</i> and response to duloxetine or placebo treatment in major depressive disorder. Pharmacogenomics, 2015, 16, 1919-1929.	1.3	19
113	The uncanny return of the race concept. Frontiers in Human Neuroscience, 2014, 8, 836.	2.0	37
114	Incorporation of Pharmacogenomics into Routine Clinical Practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Development Process. Current Drug Metabolism, 2014, 15, 209-217.	1.2	341
115	Genetic variation in the <i>GCG</i> and in the <i>GLP1R</i> genes and antipsychotic-induced weight gain. Pharmacogenomics, 2014, 15, 423-431.	1.3	12
116	A Hypothesis-Driven Association Study of 28 Nuclear-Encoded Mitochondrial Genes with Antipsychotic-Induced Weight Gain in Schizophrenia. Neuropsychopharmacology, 2014, 39, 1347-1354.	5.4	26
117	Fat Mass- and Obesity-Associated (FTO) Gene and Antipsychotic-Induced Weight Gain: An Association Study. Neuropsychobiology, 2014, 69, 59-63.	1.9	16
118	Protein kinase cAMP-dependent regulatory type II beta (<i>PRKAR2B</i>) gene variants in antipsychotic-induced weight gain. Human Psychopharmacology, 2014, 29, 330-335.	1.5	10
119	Pharmacogenetics of antidepressant treatment in obsessive–compulsive disorder: an update and implications for clinicians. Pharmacogenomics, 2014, 15, 1147-1157.	1.3	41
120	Genetic variation in the serotonin transporter and HTR1B receptor predicts reduced bone formation during serotonin reuptake inhibitor treatment in older adults. World Journal of Biological Psychiatry, 2014, 15, 404-410.	2.6	17
121	Antipsychotic Induced Weight Gain: Genetics, Epigenetics, and Biomarkers Reviewed. Current Psychiatry Reports, 2014, 16, 473.	4.5	68
122	Investigation of melanocortin system gene variants in antipsychotic-induced weight gain. World Journal of Biological Psychiatry, 2014, 15, 251-258.	2.6	5
123	Pharmacogenomic Testing for Neuropsychiatric Drugs: Current Status of Drug Labeling, Guidelines for Using Genetic Information, and Test Options. Pharmacotherapy, 2014, 34, 166-184.	2.6	69
124	Depression, Antidepressants, and Bone Health in Older Adults: A Systematic Review. Journal of the American Geriatrics Society, 2014, 62, 1434-1441.	2.6	43
125	Role of synaptosome-related (SNARE) genes in adults with attention deficit hyperactivity disorder. Psychiatry Research, 2014, 215, 799-800.	3.3	8
126	No evidence for a role of the peroxisome proliferator-activated receptor gamma (PPARG) and adiponectin (ADIPOQ) genes in antipsychotic-induced weight gain. Psychiatry Research, 2014, 219, 255-260.	3.3	13

#	Article	IF	CITATIONS
127	Pharmacogenetics of Antipsychotics. Canadian Journal of Psychiatry, 2014, 59, 76-88.	1.9	83
128	Genetics of antipsychotic drug outcome and implications for the clinician: into the limelight. Translational Developmental Psychiatry, 2014, 2, 24663.	0.3	7
129	Pharmacogenetics of Antipsychotic Treatment in Schizophrenia. Methods in Molecular Biology, 2014, 1175, 557-587.	0.9	20
130	Pharmacogenetics and outcome with antipsychotic drugs. Dialogues in Clinical Neuroscience, 2014, 16, 555-566.	3.7	72
131	Genes for Emotion-Enhanced Remembering Are Linked to Enhanced Perceiving. Psychological Science, 2013, 24, 2244-2253.	3.3	116
132	Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia. Journal of Psychiatric Research, 2013, 47, 1760-1765.	3.1	55
133	Towards the implementation of <i>CYP2D6</i> and <i>CYP2C19</i> genotypes in clinical practice: Update and report from a pharmacogenetic service clinic. International Review of Psychiatry, 2013, 25, 554-571.	2.8	63
134	Oxytocin and oxytocin receptor gene polymorphisms and risk for schizophrenia: A case–control study. World Journal of Biological Psychiatry, 2013, 14, 500-508.	2.6	84
135	Analysis of 34 candidate genes in bupropion and placebo remission. International Journal of Neuropsychopharmacology, 2013, 16, 771-781.	2.1	34
136	The pharmacogenetics of antipsychotic-induced adverse events. Current Opinion in Psychiatry, 2013, 26, 144-150.	6.3	44
137	Association of a Functional Polymorphism in Neuropeptide Y With Antipsychotic-Induced Weight Gain in Schizophrenia Patients. Journal of Clinical Psychopharmacology, 2013, 33, 11-17.	1.4	44
138	Exploratory study on association of genetic variation in <i>TBC1D1</i> with antipsychoticâ€induced weight gain. Human Psychopharmacology, 2013, 28, 183-187.	1.5	14
139	The influence of dopamineâ€related genes on perceptual stability. European Journal of Neuroscience, 2013, 38, 3378-3383.	2.6	19
140	Genetics of antipsychotic-induced weight gain: update and current perspectives. Pharmacogenomics, 2013, 14, 2067-2083.	1.3	38
141	Genetics and Personalized Medicine in Antidepressant Treatment. Current Pharmaceutical Design, 2012, 18, 5853-5878.	1.9	21
142	Association of the <i>MTHFR</i> gene with antipsychotic-induced metabolic abnormalities in patients with schizophrenia. Pharmacogenomics, 2012, 13, 843-846.	1.3	10
143	Association Between Common Variants Near the Melanocortin 4 Receptor Gene and Severe Antipsychotic Drug–Induced Weight Gain. Archives of General Psychiatry, 2012, 69, 904.	12.3	165
144	The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39, 96-101.	4.8	61

#	Article	IF	CITATIONS
145	The AmpliChip [®] CYP450 Test and Response to Treatment in Schizophrenia and Obsessive Compulsive Disorder: A Pilot Study and Focus on Cases with Abnormal CYP2D6 Drug Metabolism. Genetic Testing and Molecular Biomarkers, 2012, 16, 897-903.	0.7	29
146	Pharmacogenetics of obsessive–compulsive disorders. Pharmacogenomics, 2012, 13, 71-81.	1.3	32
147	Association between Oxytocin Receptor Gene Polymorphisms and Self-Rated â€ [~] Empathic Concern' in Schizophrenia. PLoS ONE, 2012, 7, e51882.	2.5	69
148	Association study between variants of AMP-activated protein kinase catalytic and regulatory subunit genes with antipsychotic-induced weight gain. Journal of Psychiatric Research, 2012, 46, 462-468.	3.1	26
149	<i>ANK3, CACNA1C</i> and <i>ZNF804A</i> gene variants in bipolar disorders and psychosis subphenotype. World Journal of Biological Psychiatry, 2011, 12, 392-397.	2.6	41
150	The putative functional rs1045881 marker of neurexin-1 in schizophrenia and clozapine response. Schizophrenia Research, 2011, 132, 121-124.	2.0	24
151	Role of 5-HT2C receptor gene variants in antipsychotic-induced weight gain. Pharmacogenomics and Personalized Medicine, 2011, 4, 83.	0.7	28
152	PharmGKB summary. Pharmacogenetics and Genomics, 2011, 21, 906-910.	1.5	77
153	Pharmacogenetics of alcohol, nicotine and drug addiction treatments. Addiction Biology, 2011, 16, 357-376.	2.6	61
154	Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disorders, 2011, 13, 198-207.	1.9	33
155	Gene–gene interaction analyses between NMDA receptor subunit and dopamine receptor gene variants and clozapine response. Pharmacogenomics, 2011, 12, 277-291.	1.3	22
156	Genetic interactions in the adrenergic system genes: analysis of antipsychoticâ€induced weight gain. Human Psychopharmacology, 2011, 26, 386-391.	1.5	10
157	Rassen und Rassismen. , 2011, , 75-83.		1
158	Neurexin-1 and Frontal Lobe White Matter: An Overlapping Intermediate Phenotype for Schizophrenia and Autism Spectrum Disorders. PLoS ONE, 2011, 6, e20982.	2.5	58
159	Correlation of a set of gene variants, life events and personality features on adult ADHD severity. Journal of Psychiatric Research, 2010, 44, 598-604.	3.1	25
160	Association study of polymorphisms in Insulin Induced Gene 2 (INSIG2) with antipsychoticâ€induced weight gain in European and Africanâ€American schizophrenia patients. Human Psychopharmacology, 2010, 25, 253-259.	1.5	30
161	Polymorphisms of the <i>HTR2C</i> gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics, 2010, 11, 1561-1571.	1.3	99
162	Effect of Age, Weight, and CYP2C19 Genotype on Escitalopram Exposure. Journal of Clinical Pharmacology, 2010, 50, 62-72.	2.0	60

#	Article	IF	CITATIONS
163	A Common Polymorphism in the Cannabinoid Receptor 1 (CNR1) Gene is Associated with Antipsychotic-Induced Weight Gain in Schizophrenia. Neuropsychopharmacology, 2010, 35, 1315-1324.	5.4	95
164	Neural Markers of Genetic Vulnerability to Drug Addiction. Current Topics in Behavioral Neurosciences, 2010, 3, 277-299.	1.7	17
165	Association ofHTR2C, but notLEPorINSIG2, genes with antipsychotic-induced weight gain in a German sample. Pharmacogenomics, 2010, 11, 773-780.	1.3	71
166	The catechol- <i>O</i> -methyl-transferase gene in tardive dyskinesia. World Journal of Biological Psychiatry, 2010, 11, 803-812.	2.6	25
167	Oxidative stress in tardive dyskinesia: Cenetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 50-56.	4.8	51
168	Association study of polymorphisms in cholecystokinin gene and its receptors with antipsychotic induced weight gain in schizophrenia patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 1484-1490.	4.8	18
169	Association of the α2A adrenergic receptor -1291C/G polymorphism and antipsychotic-induced weight gain in European–Americans. Pharmacogenomics, 2009, 10, 1169-1176.	1.3	48
170	Pharmacogenetics of anxiolytic drugs. Journal of Neural Transmission, 2009, 116, 667-677.	2.8	39
171	Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. European Neuropsychopharmacology, 2009, 19, 317-328.	0.7	45
172	The intersection of pharmacology, imaging, and genetics in the development of personalized medicine. Dialogues in Clinical Neuroscience, 2009, 11, 363-376.	3.7	18
173	Serotonin transporter gene and adverse life events in adult ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1461-1469.	1.7	41
174	Genetic study of eight AKT1 gene polymorphisms and their interaction with DRD2 gene polymorphisms in tardive dyskinesia. Schizophrenia Research, 2008, 106, 248-252.	2.0	24
175	Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. International Journal of Neuropsychopharmacology, 2007, 10, 639-51.	2.1	64
176	Molecular Mechanisms of Schizophrenia. Cellular Physiology and Biochemistry, 2007, 20, 687-702.	1.6	243
177	HTR2C haplotypes and antipsychoticsâ€induced weight gain: Xâ€linked multimarker analysis. Human Psychopharmacology, 2007, 22, 463-467.	1.5	39
178	Association analyses of the DAOA/G30 and d-amino-acid oxidase genes in schizophrenia: Further evidence for a role in schizophrenia. NeuroMolecular Medicine, 2007, 9, 169-177.	3.4	47
179	Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics, 2006, 7, 863-887.	1.3	139
180	Genetic association analysis of the glutathione peroxidase (GPX1) gene polymorphism (Pro197Leu) with tardive dyskinesia. Psychiatry Research, 2006, 141, 123-128.	3.3	27

#	Article	IF	CITATIONS
181	Brain-derived neurotrophic factor (BDNF) gene and rapid-cycling bipolar disorder. British Journal of Psychiatry, 2006, 189, 317-323.	2.8	101
182	Family and case–control association study of the tumor necrosis factor-alpha (TNF-α) gene with schizophrenia and response to antipsychotic medication. Psychopharmacology, 2006, 188, 171-182.	3.1	48
183	Relation between cerebrospinal fluid, gray matter and white matter changes in families with schizophrenia. Journal of Psychiatric Research, 2006, 40, 646-655.	3.1	15
184	Association study of 12 polymorphisms spanning the dopamine D2 receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology, 2005, 181, 179-187.	3.1	90
185	Suggestive association between the C825T polymorphism of the G-protein β3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia. European Neuropsychopharmacology, 2005, 15, 525-531.	0.7	59
186	The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neuroscience Letters, 2005, 379, 81-89.	2.1	93
187	Pharmacogenetics of antipsychotic-induced weight gain. Pharmacological Research, 2004, 49, 309-329.	7.1	69
188	Overview: Towards individualized treatment in schizophrenia. Drug Development Research, 2003, 60, 75-94.	2.9	9
189	Moclobemide Response in Depressed Patients: Association Study with a Functional Polymorphism in the Monoamine Oxidase A Promoter. Pharmacopsychiatry, 2002, 35, 157-158.	3.3	41
190	Caught in the trio trap? Potential selection bias inherent to association studies usings parentâ€offspring trios. American Journal of Medical Genetics Part A, 2001, 105, 351-353.	2.4	21
191	Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. American Journal of Medical Genetics Part A, 2001, 105, 498-501.	2.4	56
192	Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder. American Journal of Medical Genetics Part A, 2000, 96, 801-803.	2.4	168
193	Apolipoprotein E ɛ4 and clinical phenotype in schizophrenia. Lancet, The, 1997, 350, 1857-1858.	13.7	8