Yongliang Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1137502/publications.pdf Version: 2024-02-01

YONCHANG YONG

#	Article	IF	CITATIONS
1	C2N monolayer as NH3 and NO sensors: A DFT study. Applied Surface Science, 2019, 487, 488-495.	3.1	146
2	Adsorption of gas molecules on a graphitic GaN sheet and its implications for molecule sensors. RSC Advances, 2017, 7, 51027-51035.	1.7	97
3	Two-Dimensional Tetragonal GaN as Potential Molecule Sensors for NO and NO ₂ Detection: A First-Principle Study. ACS Omega, 2017, 2, 8888-8895.	1.6	75
4	Gas-Sensing Properties of the SiC Monolayer and Bilayer: A Density Functional Theory Study. ACS Omega, 2020, 5, 12364-12373.	1.6	69
5	C7N6 monolayer as high capacity and reversible hydrogen storage media: A DFT study. International Journal of Hydrogen Energy, 2021, 46, 21994-22003.	3.8	62
6	Ag ₇ Au ₆ Cluster as a Potential Gas Sensor for CO, HCN, and NO Detection. Journal of Physical Chemistry C, 2015, 119, 7534-7540.	1.5	52
7	The cluster-assembled nanowires based on M ₁₂ N ₁₂ (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO ₂ detection. Physical Chemistry Chemical Physics, 2016, 18, 21431-21441.	1.3	51
8	Adsorption of H ₂ S on graphane decorated with Fe, Co and Cu: a DFT study. RSC Advances, 2017, 7, 31457-31465.	1.7	46
9	Highly enhanced NH3-sensing performance of BC6N monolayer with single vacancy and Stone-Wales defects: A DFT study. Applied Surface Science, 2021, 551, 149383.	3.1	45
10	Growth Pattern and Electronic Properties of Cluster-Assembled Material Based on Zn ₁₂ O ₁₂ : A Density-Functional Study. Journal of Physical Chemistry C, 2011, 115, 6455-6461.	1.5	44
11	Bandgap engineering of MoS ₂ /MX ₂ (MX ₂ = WS ₂ ,) Tj ETQq1 compressive strain. RSC Advances, 2016, 6, 18319-18325.	1 0.78431 1.7	4 rgBT /Ove 39
12	Gas sensing and capturing based on the C7N6 monolayer with and without metal decoration: A first-principles investigation. Applied Surface Science, 2022, 591, 153129.	3.1	36
13	Si ₂ BN monolayers as promising candidates for hydrogen storage. Physical Chemistry Chemical Physics, 2020, 22, 13563-13568.	1.3	34
14	Cluster-assembled materials based on M12N12 (M = Al, Ga) fullerene-like clusters. Physical Chemistry Chemical Physics, 2011, 13, 16182.	1.3	33
15	The Zn12O12 cluster-assembled nanowires as a highly sensitive and selective gas sensor for NO and NO2. Scientific Reports, 2017, 7, 17505.	1.6	32
16	Highly sensitive and selective room-temperature gas sensors based on B6N6H6 monolayer for sensing SO2 and NH3: A first-principles study. Results in Physics, 2022, 33, 105208.	2.0	32
17	Adsorption of gas molecules on a C3N monolayer and the implications for NO2 sensors. AIP Advances, 2019, 9, .	0.6	31
18	Coalescence of B N fullerenes: A new pathway to produce boron nitride nanotubes with small diameter. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1465-1467.	0.9	28

YONGLIANG YONG

#	Article	IF	CITATIONS
19	Adsorption and gas-sensing performance of SF6 decomposition gases on GeS monolayers with and without single vacancies and Si-doping. Applied Surface Science, 2021, 568, 150961.	3.1	28
20	B4O and M@B4O (M Li and Ba) fullerenes as potential molecular sensors for acetone detection: A first-principles study. Journal of Molecular Liquids, 2018, 264, 1-8.	2.3	26
21	Adsorption, Gas-Sensing, and Optical Properties of Molecules on a Diazine Monolayer: A First-Principles Study. ACS Omega, 2021, 6, 11418-11426.	1.6	20
22	Theoretical prediction of low-density nanoporous frameworks of zinc sulfide based on Zn _n S _n (n = 12, 16) nanocaged clusters. RSC Advances, 2014, 4, 37333-37341.	1.7	19
23	Enhancement of nitride-gas sensing performance of SiC7 monolayer induced by external electric field. Vacuum, 2021, 191, 110393.	1.6	19
24	The M ₁₂ N ₁₂ (M  =  Al, Ga) clusters as potential sensors for NO, NO ₂ and HCN detection. Materials Research Express, 2017, 4, 015009.	0.8	17
25	Ultrathin nanowire based on icosahedral W@Au12 and application as NO gas sensor. Journal of Physics and Chemistry of Solids, 2019, 127, 68-75.	1.9	16
26	Adsorption, sensing and optical properties of molecules on BC3 monolayer: First-principles calculations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115266.	1.7	16
27	Structures, stabilities, and magnetic properties of Cu-doped ZnnOn (n=3,9,12) clusters: A theoretical study. Computational and Theoretical Chemistry, 2012, 989, 90-96.	1.1	14
28	C ₅₄ Si ₆ heterofullerene as a potential gas sensor for CO, NO, and HCN detection. RSC Advances, 2016, 6, 89080-89088.	1.7	14
29	Adsorption sensitivity of graphane decorated with B, N, S, and Al towards HCN: a first-principles study. RSC Advances, 2017, 7, 43521-43530.	1.7	13
30	Hydrogenated Si12Au20 cluster as a molecular sensor with high performance for NH3 and NO detection: A first-principle study. Journal of Molecular Liquids, 2019, 289, 111153.	2.3	13
31	Potential reversible and high-capacity hydrogen storage medium: Li-decorated B3S monolayers. Materials Today Communications, 2021, 29, 102938.	0.9	12
32	W@Si ₁₂ cluster as a potential sensor for CO and NO detection. Europhysics Letters, 2015, 111, 10006.	0.7	10
33	First-principles investigation of MoS ₂ monolayer adsorbed on SiO ₂ (0001) Surface. Modern Physics Letters B, 2017, 31, 1750229.	1.0	8
34	Adsorption of 2, 3, 7, 8-tetrachlorodibenzao-p-dioxin (TCDD) on graphane decorated with Ni and Cu: A DFT study. Vacuum, 2018, 149, 53-59.	1.6	8
35	Stability and magnetism of tetracyanoethylene adsorbed on substitutionally doped graphene. Journal of Applied Physics, 2012, 111, 083713.	1.1	7
36	Adsorption of gas molecules on Gd@Au _n (n = 14, 15) clusters and their implication for molecule sensors. RSC Advances, 2016, 6, 26809-26816.	1.7	6

YONGLIANG YONG

#	Article	IF	CITATIONS
37	Influence of vacancy defects and 3d transition metal adatoms on the electronic and magnetic properties of graphene. RSC Advances, 2016, 6, 92857-92861.	1.7	6
38	Controllable repairing the single vacancies of BC3 monolayer using CO and BF molecules: A first-principles study. Results in Physics, 2022, 35, 105365.	2.0	5
39	Density-functional study of structural, electronic, and magnetic properties of N-doped ZnnOn (n=2–13) clusters. Computational and Theoretical Chemistry, 2013, 1012, 14-19.	1.1	4
40	Theoretical prediction of novel ultrafine nanowires formed by Si12C12 cage-like clusters. European Physical Journal D, 2014, 68, 1.	0.6	4
41	The H60Si6C54 heterofullerene as high-capacity hydrogen storage medium. AIP Advances, 2016, 6, 075321.	0.6	4
42	Adsorption sensitivity of defected graphene towards NO molecule: a DFT study. Journal of the Iranian Chemical Society, 2018, 15, 1755-1763.	1.2	4
43	Density functional studies of small silicon clusters adsorbed on graphene. RSC Advances, 2015, 5, 38680-38689.	1.7	3