S TakÃ;cs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11374323/publications.pdf Version: 2024-02-01

C TAKÃ:CC

#	Article	IF	CITATIONS
1	Time constant of round superconducting structures determined from the time development of the induced magnetic field. Cryogenics, 2016, 80, 91-96.	1.7	0
2	Possible method to improve the stability of twisted superconductors. Cryogenics, 2015, 65, 1-4.	1.7	0
3	Acceptable coupling losses in striated coated conductors or twisted cables ensuring current sharing between superconducting filaments. Superconductor Science and Technology, 2013, 26, 055022.	3.5	4
4	Determination of time constant at different positions above superconducting cables. Cryogenics, 2012, 52, 478-481.	1.7	1
5	Determination of the time constant from the time development of the induced magnetic field above superconducting cables. Superconductor Science and Technology, 2011, 24, 095011.	3.5	2
6	Frequency dependence of coupling losses in twisted superconducting structures. Superconductor Science and Technology, 2011, 24, 065018.	3.5	1
7	AC losses in superconductors shielded by a normal metal or another superconductor. Superconductor Science and Technology, 2010, 23, 065023.	3.5	0
8	The effect of resistive filament interconnections on coupling losses in filamentary YBa ₂ Cu ₃ O ₇ coated conductors. Superconductor Science and Technology, 2009, 22, 025016.	3.5	11
9	Acceptable coupling losses in twisted cables with current sharing by connecting the superconducting strands with normal metal plates. Superconductor Science and Technology, 2009, 22, 075006.	3.5	0
10	Acceptable coupling losses in coated conductors at industrial frequencies without twisting the superconducting stripes. Journal of Applied Physics, 2008, 103, .	2.5	8
11	Coupling Losses in Superconductors With Twisted Filaments, Stripes, or Striations. IEEE Transactions on Applied Superconductivity, 2007, 17, 3151-3154.	1.7	7
12	Hysteresis losses in superconductors with an out-of-phase applied magnetic field and current: slab geometry. Superconductor Science and Technology, 2007, 20, 1093-1096.	3.5	4
13	Current transfer between superconductor and normal layer in coated conductors. Superconductor Science and Technology, 2007, 20, 180-185.	3.5	6
14	Low coupling losses in YBa2Cu3O7 coated conductors with current sharing between the superconducting stripes. Applied Physics Letters, 2007, 90, 242505.	3.3	9
15	Theoretical Estimation of Electromagnetic Loss From the Movement of Superconducting Coil in the W7-X Stellarator. IEEE Transactions on Applied Superconductivity, 2006, 16, 123-126.	1.7	3
16	Loss contributions in superconducting magnets caused by transient magnetic fields. Fusion Engineering and Design, 2006, 81, 2509-2513.	1.9	2
17	Change of the induced magnetic field and time constant along twisted superconducting cables with finite length. Fusion Engineering and Design, 2006, 81, 2515-2519.	1.9	3
18	Coupling losses in flat cables and coated conductors. Superconductor Science and Technology, 2006, 19, 738-741.	3.5	2

#	Article	IF	CITATIONS
19	Hysteresis and coupling losses of superconducting cables at additional change of the applied magnetic field. Superconductor Science and Technology, 2005, 18, 340-345.	3.5	6
20	The contribution of edge currents to coupling losses of flat superconducting cables. Superconductor Science and Technology, 2005, 18, 187-192.	3.5	2
21	Basic and higher harmonics of superconducting cylinder at applying the current below and above the critical current. Physica C: Superconductivity and Its Applications, 2004, 401, 187-190.	1.2	1
22	Some parameters of superconductors with an extreme singularity in the density of state: (s+d) model. Solid State Communications, 2003, 128, 455-459.	1.9	1
23	Coupling losses in flat superconducting cables with considerable edge currents between the strands. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1806-1809.	1.2	0
24	Time constants of flat superconducting composites determined from AC loss and relaxation measurements. Physica C: Superconductivity and Its Applications, 2001, 354, 202-208.	1.2	1
25	The effective resistance between twisted superconducting filaments in tapes. Physica C: Superconductivity and Its Applications, 2001, 354, 265-269.	1.2	1
26	The design of flat superconducting cables with considerable edge currents between the strands: coupling losses between opposite strands. Superconductor Science and Technology, 2001, 14, 496-503.	3.5	3
27	Some factors determining the effective resistance between strands in flat cables (or superconducting) Tj ETQq	1 1 <u>9</u> .7843 3.5	14 rgBT /Ove
28	Flux pinning in the weak layers of superconducting heterogeneous structures. Physica C: Superconductivity and Its Applications, 1999, 316, 129-151.	1.2	2
29	Modelling of M–H loop anomalies in synergistically pinned, heterogeneous, composite superconductors. Physica C: Superconductivity and Its Applications, 1998, 306, 300-308.	1.2	2
30	The similarities in loss creation in LTS and HTS cables. Physica C: Superconductivity and Its Applications, 1998, 310, 218-224.	1.2	16
31	Current distribution in superconducting cables due to field changes at the end portions of magnetic systems. Superconductor Science and Technology, 1998, 11, 1209-1216.	3.5	3
32	Critical Currents and Superconducting Boundary Effects in S-N-S Multifilamentary Composites. , 1998, , 843-850.		0
33	Current distribution in superconductors. , 1998, , 79-98.		1
34	Factors Controlling the Onset of Proximity Effect Coupling (PEC) and the Influence of Pinning-Assisted Pec on M-H Loop Asymmetry in Multifilamentary Composites. , 1998, , 1085-1092.		1
35	AC losses in superconducting cables and their expected values in magnetic systems. Superconductor Science and Technology, 1997, 10, 733-748.	3.5	44
36	Current distribution and coupling losses in superconducting cables being partially in magnetic fields. IEEE Transactions on Applied Superconductivity, 1997, 7, 258-261.	1.7	2

#	Article	IF	CITATIONS
37	Measurement of time constants for superconducting cables with Hall probes. Cryogenics, 1997, 37, 783-788.	1.7	11
38	Time constants and AC losses of flat superconducting cables in magnetic fields changing along the cable. Cryogenics, 1996, 36, 517-520.	1.7	0
39	AC losses and time constants of flat superconducting cables in inhomogeneous magnetic fields. Superconductor Science and Technology, 1996, 9, 137-140.	3.5	9
40	Time Constants of Flat Superconducting Cables. , 1996, , 1233-1240.		9
41	Irreversibility Line in Superconductor as Line of Constant Shielding Current Density. , 1996, , 587-593.		2
42	Size effect in AC losses of superconducting cables. IEEE Transactions on Applied Superconductivity, 1995, 5, 2-6.	1.7	29
43	Time constants of normal metals and superconductors at different ramp rates during a cycle. Cryogenics, 1994, 34, 679-684.	1.7	16
44	Magnetic irreversibility in superconductors characterised by shielding current density. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2753-2754.	1.2	8
45	A.c. susceptibility of melt-processed high Tc superconductors. Cryogenics, 1993, 33, 133-137.	1.7	4
46	Irreversibility line and non-linearity in the AC response caused by flux pinning in high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1993, 217, 297-312.	1.2	33
47	Critical temperature and energy gap in superconductors with singular density of states. European Physical Journal D, 1993, 43, 1129-1136.	0.4	1
48	Dependence of the critical temperature and energy gap of superconductors on a singularity in the density of states. Physical Review B, 1993, 48, 13127-13128.	3.2	7
49	Penetration field in superconductors with considerable flux creep and flux flow. Superconductor Science and Technology, 1992, 5, S452-S455.	3.5	3
50	Direct summation of elementary pinning forces for Nb-Ti superconductors with a field-dependent probability function. Superconductor Science and Technology, 1992, 5, S97-S100.	3.5	6
51	Energy gap in superconductors with singular asymmetric density of states. Physical Review B, 1992, 46, 3145-3146.	3.2	10
52	Coupling losses in inhomogeneous cores of superconducting cables. Cryogenics, 1992, 32, 258-264.	1.7	13
53	Some problems of coupling loss calculations, in superconducting cables. IEEE Transactions on Magnetics, 1991, 27, 2206-2209.	2.1	16
54	Frequency dependence of AC susceptibility due to the viscous motion of flux lines. IEEE Transactions on Magnetics, 1991, 27, 1057-1060.	2,1	20

#	Article	IF	CITATIONS
55	The flux distribution and hysteresis losses in highT c superconductors including viscous forces on flux lines. European Physical Journal D, 1990, 40, 556-568.	0.4	1
56	Influence of field dependent critical current density on flux profiles in highT c superconductors. European Physical Journal D, 1990, 40, 1040-1053.	0.4	5
57	Localized more-particle excitations in two- and one-dimensional fermion systems of high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1990, 165, 91-96.	1.2	0
58	The influence of viscous flux flow on AC losses of high Tc superconductors. Physica B: Condensed Matter, 1990, 165-166, 1399-1400.	2.7	4
59	Influence of viscous flux flow on AC magnetisation of high-Tcsuperconductors. Superconductor Science and Technology, 1990, 3, 94-99.	3.5	24
60	Effect of deposition temperature on properties of CVD prepared Nb3Ge superconductor. European Physical Journal D, 1989, 39, 196-206.	0.4	3
61	Tunneling spectroscopy in thin films YBCO/Pb tunnel structures. IEEE Transactions on Magnetics, 1989, 25, 2583-2586.	2.1	7
62	Voltage versus current characteristics of high Tc superconductors described by a statistical series-parallel model. Cryogenics, 1989, 29, 731-735.	1.7	2
63	AC magnetization of high Tc superconductors at low superimposed DC magnetic fields. Physica C: Superconductivity and Its Applications, 1989, 160, 1-7.	1.2	21
64	Resistive state of inhomogeneous superconducting composites. Cryogenics, 1988, 28, 374-380.	1.7	15
65	Losses in transformer-like coils wound from a very fine filament Nbî—,Ti superconductor. Cryogenics, 1988, 28, 386-393.	1.7	6
66	Pinning force in thin superconductors with small number of flux line rows. European Physical Journal D, 1988, 38, 1050-1056.	0.4	5
67	Hysteresis losses of fine filamentary superconductors including field dependent critical current density. European Physical Journal D, 1988, 38, 899-909.	0.4	6
68	The study of modified critical current distribution and its application to the resistive state of macroscopically inhomogeneous type II superconductors. European Physical Journal D, 1988, 38, 910-918.	0.4	1
69	Hysteresis losses in superconductors with very fine filaments. Superconductor Science and Technology, 1988, 1, 53-56.	3.5	49
70	Possible Restriction of the Critical Current Density in High Temperature Super conductors. Physica Status Solidi (B): Basic Research, 1987, 144, K125.	1.5	5
71	Properties of superfine superconducting filaments embedded in normal matrix. European Physical Journal D, 1986, 36, 524-536.	0.4	20
72	Properties of superconducting NbTi superfine filament composites with diameters â‰20.1 μm. Cryogenics, 1985, 25, 558-565.	1.7	93

#	Article	IF	CITATIONS
73	Pinning on surfaces and large grain boundaries due to the transition from hexagonal to quadratic vortex lattice. European Physical Journal D, 1984, 34, 571-580.	0.4	0
74	Coupling losses of finite superconducting cables. Cryogenics, 1984, 24, 237-244.	1.7	12
75	The flux line lattice in superconducting slabs. European Physical Journal D, 1983, 33, 1248-1261.	0.4	22
76	The influence of defect clustering on the volume pinning force in superconductors. European Physical Journal D, 1983, 33, 70-80.	0.4	2
77	The critical currents in superconductors with anisotropic defects by magnetization and resistive measurements. European Physical Journal D, 1983, 33, 208-220.	0.4	2
78	Critical currents of NbTi tapes with differently oriented anisotropic defects. Cryogenics, 1983, 23, 153-159.	1.7	17
79	Statistical theory of pinning in superconductors including correlations in the defect distribution. Acta Physica Academiae Scientiarum Hungaricae, 1982, 53, 337-345.	0.1	0
80	Coupling losses in cables in spatially changing ac fields. Cryogenics, 1982, 22, 661-665.	1.7	42
81	The Summation of Pinning Forces in Superconductors with Small Defect Densities. Physica Status Solidi A, 1982, 74, 437-444.	1.7	11
82	Coupling losses in finite length of superconducting cables and in long cables partially in magnetic field. IEEE Transactions on Magnetics, 1981, 17, 2281-2284.	2.1	50
83	On the preparation and study of Superconductors. Acta Physica Academiae Scientiarum Hungaricae, 1981, 50, 153-159.	0.1	1
84	The volume pinning force for periodical interaction forces between defects and the flux line lattice. European Physical Journal D, 1979, 29, 1046-1054.	0.4	1
85	Josephson effects in long superconducting bridges with variable thickness. Solid State Communications, 1977, 24, 717-720.	1.9	2
86	The angular dependence of critical currents in Nb3Sn — Effect of some preparation conditions. European Physical Journal D, 1977, 27, 571-576.	0.4	3
87	The volume pinning force for different shapes of the interaction potential between defects and flux lines. European Physical Journal D, 1977, 27, 336-347.	0.4	2
88	Critical currents of type ii superconductors in non-transversal magnetic fields. European Physical Journal D, 1977, 27, 701-710.	0.4	0
89	The angular dependence of critical currents in Nb3Sn — Effect of some preparation conditions I. Experimental and structural investigations. European Physical Journal D, 1977, 27, 468-476.	0.4	6
90	The angular dependence of critical currents in superconductors with long narrow defects. Physica Status Solidi A, 1977, 41, K175-K179.	1.7	8

#	Article	IF	CITATIONS
91	Influence of gas impurities on the angular dependence of the critical currents in Nb3Sn vapour-deposited tapes. Physica Status Solidi A, 1976, 33, 85-90.	1.7	14
92	Pinning in superconductors with attractive and repulsive interaction defect-flux line. European Physical Journal D, 1975, 25, 1155-1175.	0.4	11
93	The Defect Structure of Superconductors and the Critical Current in Non-Transversal Magnetic Fields. Physica Status Solidi A, 1975, 32, 485-488.	1.7	16
94	Statistical treatment of pinning on point defects including some correlation effects. Physica Status Solidi A, 1973, 19, K35-K38.	1.7	3
95	New conception of the critical-velocity model in superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1973, 46, 121-122.	2.1	17
96	Dependence of the pinning of fluxoids on grain boundaries on the direction of magnetic field. European Physical Journal D, 1973, 23, 636-643.	0.4	9
97	The angular dependence of Nb3Sn critical currents in transverse magnetic fields. European Physical Journal D, 1973, 23, 644-651.	0.4	9
98	A theory of the resistive state of extremely inhomogeneous type II superconductors and the electron band model. European Physical Journal D, 1970, 20, 21-31.	0.4	4
99	Pinning of Flux Lines in Superconducting Niobium due to Point Defects. Physica Status Solidi (B): Basic Research, 1970, 41, 671-679.	1.5	32
100	Der Einfluss der Metallbedeckung auf die Supraleitenden Eigenschaften von Dünnen Zylindern. European Physical Journal D, 1969, 19, 1366-1378.	0.4	12
101	The critical parameters of thin type II superconductor cylinder coated with normal metal. Physics Letters, Section A: General, Atomic and Solid State Physics, 1968, 28, 349-350.	2.1	13
102	Der Flußeintritt in Supraleiter II. Art. Physica Status Solidi (B): Basic Research, 1967, 21, 709-716.	1.5	8