Zhenzhen Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11374283/zhenzhen-wang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31	3,066	22	32
papers	citations	h-index	g-index
32 ext. papers	3,743 ext. citations	11.1 avg, IF	5.46 L-index

#	Paper	IF	Citations
31	Modular AND Gate-Controlled Delivery Platform for Tumor Microenvironment Specific Activation of Protein Activity. <i>Chemistry - A European Journal</i> , 2020 , 26, 7573-7577	4.8	O
30	Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. <i>Biomaterials</i> , 2019 , 223, 119462	15.6	64
29	Silver-Infused Porphyrinic Metal Drganic Framework: Surface-Adaptive, On-Demand Nanoplatform for Synergistic Bacteria Killing and Wound Disinfection. <i>Advanced Functional Materials</i> , 2019 , 29, 18085	9 4 5.6	102
28	DNA-MnO nanosheets as washing- and label-free platform for array-based differentiation of cell types. <i>Analytica Chimica Acta</i> , 2019 , 1056, 1-6	6.6	9
27	Constructing metalBrganic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. <i>Materials Horizons</i> , 2019 , 6, 1682-1687	14.4	37
26	Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. <i>Chemical Communications</i> , 2019 , 55, 15097-15100	5.8	20
25	Facile preparation of Imetal-organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment. <i>Talanta</i> , 2019 , 194, 703-708	6.2	42
24	Enzyme Mimicry for Combating Bacteria and Biofilms. Accounts of Chemical Research, 2018, 51, 789-79	9 24.3	216
23	Phytochemical-encapsulated nanoplatform for Bn-demandßynergistic treatment of multidrug-resistant bacteria. <i>Nano Research</i> , 2018 , 11, 3762-3770	10	21
22	Nanozyme Decorated Metal-Organic Frameworks for Enhanced Photodynamic Therapy. <i>ACS Nano</i> , 2018 , 12, 651-661	16.7	464
21	Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. <i>Nature Communications</i> , 2018 , 9, 3334	17.4	308
20	Erythrocyte Membrane Cloaked Metal-Organic Framework Nanoparticle as Biomimetic Nanoreactor for Starvation-Activated Colon Cancer Therapy. <i>ACS Nano</i> , 2018 , 12, 10201-10211	16.7	214
19	Ultrasmall Nanozymes Isolated within Porous Carbonaceous Frameworks for Synergistic Cancer Therapy: Enhanced Oxidative Damage and Reduced Energy Supply. <i>Chemistry of Materials</i> , 2018 , 30, 78	39 <u>-6</u> 83	39 ⁵⁹
18	Metal-Organic Framework-Based Nanoplatform for Intracellular Environment-Responsive Endo/Lysosomal Escape and Enhanced Cancer Therapy. <i>ACS Applied Materials & Discrete Material</i>	9.5	47
17	Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. <i>Nano Letters</i> , 2018 , 18, 3344-3351	11.5	120
16	An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS. ACS Nano, 2017, 11, 4651-46	 5 59 6.7	139
15	Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions. <i>Chemical Communications</i> , 2017 , 53, 8415-8418	5.8	5

LIST OF PUBLICATIONS

14	Hyaluronic Acid-Templated Ag Nanoparticles/Graphene Oxide Composites for Synergistic Therapy of Bacteria Infection. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 19717-19724	9.5	86
13	A bifunctional nanomodulator for boosting CpG-mediated cancer immunotherapy. <i>Nanoscale</i> , 2017 , 9, 14236-14247	7.7	38
12	Confinement of Reactive Oxygen Species in an Artificial-Enzyme-Based Hollow Structure To Eliminate Adverse Effects of Photocatalysis on UV Filters. <i>Chemistry - A European Journal</i> , 2017 , 23, 135	51 8 -13!	524
11	Activation of biologically relevant levels of reactive oxygen species by Au/g-CN hybrid nanozyme for bacteria killing and wound disinfection. <i>Biomaterials</i> , 2017 , 113, 145-157	15.6	234
10	A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. <i>Nanoscale</i> , 2016 , 8, 12570-8	7.7	71
9	Embedding magnetic nanoparticles into coordination polymers to mimic zinc ion transporters for targeted tumor therapy. <i>Chemical Communications</i> , 2016 , 52, 12598-12601	5.8	9
8	A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10732-6	16.4	134
7	A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. <i>Angewandte Chemie</i> , 2016 , 128, 10890-10894	3.6	24
6	Copper(II)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11467-71	16.4	282
5	Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform. <i>Small</i> , 2015 , 11, 4970-5	11	44
4	Programmable Downregulation of Enzyme Activity Using a Fever and NIR-Responsive Molecularly Imprinted Nanocomposite. <i>Small</i> , 2015 , 11, 6172-8	11	11
3	Multifunctional upconverting nanoparticles for near-infrared triggered and synergistic antibacterial resistance therapy. <i>Chemical Communications</i> , 2014 , 50, 10488-90	5.8	92
2	A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. <i>Biomaterials</i> , 2014 , 35, 9678-88	15.6	149
1	Coupling exonuclease III with DNA metallization for amplified detection of biothiols at picomolar concentration. <i>Biosensors and Bioelectronics</i> , 2014 , 58, 214-8	11.8	10