List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11374232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stabilisation of Archaean lithospheric mantle: A ReOs isotope study of peridotite xenoliths from the Kaapvaal craton. Earth and Planetary Science Letters, 1995, 134, 341-357.	1.8	400
2	Reî—,Os, Smî—,Nd, and Rbî—,Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochimica Et Cosmochimica Acta, 1995, 59, 959-977.	1.6	344
3	Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chemical Geology, 2004, 208, 29-59.	1.4	290
4	Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP-MS. Chemical Geology, 2000, 165, 87-107.	1.4	265
5	The age of continental roots. Lithos, 1999, 48, 171-194.	0.6	260
6	Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. , 2003, , 171-275.		259
7	Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology, 2006, 232, 114-133.	1.4	246
8	Formation of Archaean continental lithosphere and its diamonds: the root of the problem. Journal of the Geological Society, 2008, 165, 895-914.	0.9	240
9	Ferric iron in peridotites and mantle oxidation states. Earth and Planetary Science Letters, 1994, 123, 205-220.	1.8	219
10	Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos, 2009, 112, 236-248.	0.6	211
11	Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re–Os systematics. Earth and Planetary Science Letters, 1998, 160, 311-326.	1.8	176
12	Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift. Earth and Planetary Science Letters, 2009, 284, 236-248.	1.8	168
13	Oxygen isotope evidence for the origin of pyroxenites in the Beni Bousera peridotite massif, North Morocco: derivation from subducted oceanic lithosphere. Earth and Planetary Science Letters, 1991, 102, 289-301.	1.8	105
14	Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos, 2009, 112, 284-295.	0.6	97
15	Water-rock interaction in an acidic mine discharge as indicated by rare earth element patterns. Geochimica Et Cosmochimica Acta, 2001, 65, 3027-3040.	1.6	93
16	Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth and Planetary Science Letters, 2008, 274, 24-33.	1.8	91
17	Re-Os isotope measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochimica Et Cosmochimica Acta, 1999, 63, 703-711.	1.6	90
18	Highly siderophile element behaviour accompanying subduction of oceanic crust: Whole rock and mineral-scale insights from a high-pressure terrain. Geochimica Et Cosmochimica Acta, 2009, 73, 1394-1416.	1.6	86

#	Article	IF	CITATIONS
19	The petrogenesis of the eastern Pyrenean peridotites: an integrated study of their whole-rock geochemistry and Re-Os isotope composition. Geochimica Et Cosmochimica Acta, 1998, 62, 2293-2310.	1.6	83
20	Carbon and nitrogen isotope systematics within a sector-growth diamond from the Mir kimberlite, Yakutia. Chemical Geology, 2002, 188, 105-123.	1.4	83
21	The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths. , 2014, , 255-292.		80
22	Formation of the North Atlantic Craton: Timing and mechanisms constrained from Re–Os isotope and PGE data of peridotite xenoliths from S.W. Greenland. Chemical Geology, 2010, 276, 166-187.	1.4	79
23	High temperature strontium stable isotope behaviour in the early solar system and planetary bodies. Earth and Planetary Science Letters, 2012, 329-330, 31-40.	1.8	72
24	Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relationsâ~†. Lithos, 2004, 77, 573-592.	0.6	70
25	Combining CSD and isotopic microanalysis: Magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earth and Planetary Science Letters, 2007, 260, 419-431.	1.8	69
26	Microanalysis of δ13C, δ15N, and N abundances in diamonds by secondary ion mass spectrometry. Chemical Geology, 2002, 185, 149-163.	1.4	67
27	An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos, 2009, 112, 1096-1108.	0.6	65
28	Extreme platinum-group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: Tracing mantle source heterogeneity. Chemical Geology, 2008, 248, 213-238.	1.4	63
29	The aluminum-in-olivine thermometer for mantle peridotites — Experimental versus empirical calibration and potential applications. Lithos, 2017, 272-273, 301-314.	0.6	63
30	Precise and accurate 186Os/188Os and 187Os/188Os measurements by multi-collector plasma ionisation mass spectrometry (MC-ICP-MS) part I: Solution analyses. Chemical Geology, 2008, 248, 363-393.	1.4	58
31	Precise and accurate 186Os/188Os and 187Os/188Os measurements by Multi-collector Plasma Ionisation Mass Spectrometry, part II: Laser ablation and its application to single-grain Pt–Os and Re–Os geochronology. Chemical Geology, 2008, 248, 394-426.	1.4	57
32	Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos, 2016, 265, 237-243.	0.6	57
33	Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187Os/188Os composition of the convecting mantle and the nature of high 3He/4He mantle. Earth and Planetary Science Letters, 2009, 278, 267-277.	1.8	56
34	Re–Os dating of sulphide inclusions zonally distributed in single Yakutian diamonds: Evidence for multiple episodes of Proterozoic formation and protracted timescales of diamond growth. Geochimica Et Cosmochimica Acta, 2013, 120, 363-394.	1.6	56
35	From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth and Planetary Science Letters, 2010, 299, 80-90.	1.8	53
36	Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia. Earth and Planetary Science Letters, 2019, 507, 175-186.	1.8	50

#	Article	IF	CITATIONS
37	Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos, 2015, 218-219, 155-166.	0.6	48
38	Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador. Earth and Planetary Science Letters, 2018, 503, 95-107.	1.8	46
39	Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chemical Geology, 2019, 524, 136-157.	1.4	44
40	Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton. Geochimica Et Cosmochimica Acta, 2013, 100, 176-199.	1.6	42
41	Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochimica Et Cosmochimica Acta, 2014, 139, 26-46.	1.6	42
42	Timing and origin of magmatism in the Sverdrup Basin, Northern Canada—Implications for lithospheric evolution in the High Arctic Large Igneous Province (HALIP). Tectonophysics, 2018, 742-743, 50-65.	0.9	42
43	The development of acidic groundwaters in coal-bearing strata: Part I. Rare earth element fingerprinting. Applied Geochemistry, 2001, 16, 1465-1480.	1.4	40
44	Mantle Samples Included in Volcanic Rocks. , 2014, , 169-253.		40
45	Onset of new, progressive crustal growth in the central Slave craton at 3.55 Ga. Geochemical Perspectives Letters, 0, , 8-13.	1.0	36
46	The 190Pt–186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chemical Geology, 2012, 302-303, 48-60.	1.4	33
47	An eclogitic diamond from Mir pipe (Yakutia), recording two growth events from different isotopic sources. Chemical Geology, 2014, 381, 40-54.	1.4	32
48	Plume impingement on the Siberian SCLM: Evidence from Re–Os isotope systematics. Lithos, 2015, 218-219, 141-154.	0.6	32
49	Multiple growth events, processes and fluid sources involved in diamond genesis: A micro-analytical study of sulphide-bearing diamonds from Finsch mine, RSA. Geochimica Et Cosmochimica Acta, 2013, 106, 51-70.	1.6	31
50	Combined Sr isotope and trace element analysis of melt inclusions at sub-ng levels using micro-milling, TIMS and ICPMS. Chemical Geology, 2009, 260, 254-268.	1.4	30
51	The geological record of base metal sulfides in the cratonic mantle: A microscale 187 Os/ 188 Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada). Geochimica Et Cosmochimica Acta, 2017, 216, 264-285.	1.6	30
52	Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. Geochimica Et Cosmochimica Acta, 2020, 275, 99-122.	1.6	26
53	In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton. Geochimica Et Cosmochimica Acta, 2016, 174, 345-359.	1.6	25
54	lsotopic tracing of the impact of mobility on infectious disease: The origin of people with treponematosis buried in hull, England, in the late medieval period. American Journal of Physical Anthropology, 2013, 150, 273-285.	2.1	24

#	Article	IF	CITATIONS
55	Re–Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand Basin. Chemical Geology, 2010, 276, 88-94.	1.4	23
56	Investigating metasomatic effects on the 187Os isotopic signature: A case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite (Botswana). Lithos, 2015, 232, 35-48.	0.6	23
57	An alternative model for silica enrichment in the Kaapvaal subcontinental lithospheric mantle. Geochimica Et Cosmochimica Acta, 2009, 73, 6894-6917.	1.6	21
58	A common parentage-low abundance trace element data of gem diamonds reveals similar fluids to fibrous diamonds. Lithos, 2019, 324-325, 356-370.	0.6	20
59	Precise Pb isotope ratio determination of picogram-size samples: A comparison between multiple Faraday collectors equipped with 1012Ω amplifiers and multiple ion counters. Chemical Geology, 2015, 395, 27-40.	1.4	19
60	The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume?. Lithos, 2018, 304-307, 362-373.	0.6	18
61	The transition zone as a host for recycled volatiles: Evidence from nitrogen and carbon isotopes in ultra-deep diamonds from Monastery and Jagersfontein (South Africa). Chemical Geology, 2017, 466, 733-749.	1.4	17
62	No mantle residues in the Isua Supracrustal Belt. Earth and Planetary Science Letters, 2022, 579, 117348.	1.8	15
63	Trace elements in gem diamond from Akwatia, Ghana and DeBeers Pool, South Africa. Chemical Geology, 2012, 314-317, 1-8.	1.4	13
64	Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland. Geochimica Et Cosmochimica Acta, 2017, 203, 37-53.	1.6	12
65	Fluid-induced transition from banded kyanite- to bimineralic eclogite and implications for the evolution of cratons. Geochimica Et Cosmochimica Acta, 2017, 207, 19-42.	1.6	10
66	The application of trace elements and Sr–Pb isotopes to dating and tracing ruby formation: The Aappaluttoq deposit, SW Greenland. Chemical Geology, 2019, 523, 42-58.	1.4	10
67	The age of continental roots. Developments in Geotectonics, 1999, 24, 171-194.	0.3	9
68	Diamond-forming media through time – Trace element and noble gas systematics of diamonds formed over 3 billion years of Earth's history. Geochimica Et Cosmochimica Acta, 2019, 257, 266-283.	1.6	9
69	Chemical and temporal variations in the Earth's lithosphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 647-669.	1.6	8
70	Mesoarchean diamonds formed in thickened lithosphere, caused by slab-stacking. Earth and Planetary Science Letters, 2022, 592, 117633.	1.8	8
71	Extent and age of Mesoarchean components in the Nagssugtoqidian orogen, West Greenland: Implications for tectonic environments and crust building in cratonic orogenic belts. Lithos, 2021, 396-397, 106182.	0.6	5
72	Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochimica Et Cosmochimica Acta, 1995, 59, 959-977.	1.6	3

#	Article	IF	CITATIONS
73	Geochronology of scapolite pegmatites from the NordÃyane ultra-high-pressure domain, Western Gneiss Region, Norway: Protracted crystal-melt reaction during Scandian exhumation. Lithos, 2022, 424-425, 106756.	0.6	1