Tatiana G Kutateladze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1137299/publications.pdf Version: 2024-02-01

		30070	27406
177	12,488	54	106
papers	citations	h-index	g-index
192	192	192	13963
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Combinatorial inhibition of BTK, PI3K-AKT and BRD4-MYC as a strategy for treatment of mantle cell lymphoma. Molecular Biomedicine, 2022, 3, 2.	4.4	6
2	Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chemical Biology, 2022, 17, 495-502.	3.4	12
3	PI3Kâ€Î±/mTOR/BRD4 inhibitor alone or in combination with other antiâ€virals blocks replication of SARSâ€CoVâ€2 and its variants of concern including Delta and Omicron. Clinical and Translational Medicine, 2022, 12, e806.	4.0	13
4	The ZZ domain of HERC2 is a receptor of arginylated substrates. Scientific Reports, 2022, 12, 6063.	3.3	2
5	Combining antiviral drugs with BET inhibitors is beneficial in combatting SARSâ€CoVâ€2 infection. Clinical and Translational Discovery, 2022, 2, .	0.5	4
6	Dusquetide modulates innate immune response through binding to p62. Structure, 2022, 30, 1055-1061.e7.	3.3	1
7	Taf2 mediates DNA binding of Taf14. Nature Communications, 2022, 13, .	12.8	4
8	Binding of the SARS-CoV-2 envelope E protein to human BRD4 is essential for infection. Structure, 2022, 30, 1224-1232.e5.	3.3	21
9	A Novel Triple-Action Inhibitor Targeting B-Cell Receptor Signaling and BRD4 Demonstrates Preclinical Activity in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2022, 23, 6712.	4.1	4
10	Structural basis for binding diversity of acetyltransferase p300 to the nucleosome. IScience, 2022, 25, 104563.	4.1	9
11	Enzymatic Reactions inside Biological Condensates. Journal of Molecular Biology, 2021, 433, 166624.	4.2	50
12	ZZEF1 is a Histone Reader and Transcriptional Coregulator of Krüppel-Like Factors. Journal of Molecular Biology, 2021, 433, 166722.	4.2	3
13	Characterization of functional disordered regions within chromatin-associated proteins. IScience, 2021, 24, 102070.	4.1	27
14	Suppression of canonical TGF-β signaling enables GATA4 to interact with H3K27me3 demethylase JMJD3 to promote cardiomyogenesis. Journal of Molecular and Cellular Cardiology, 2021, 153, 44-59.	1.9	18
15	Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy. Magnetic Resonance, 2021, 2, 187-202.	1.9	9
16	Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). Journal of Medicinal Chemistry, 2021, 64, 8510-8522.	6.4	12
17	Structural and biophysical characterization of the nucleosome-binding PZP domain. STAR Protocols, 2021, 2, 100479.	1.2	5
18	Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity. Nature Communications, 2021, 12, 4618.	12.8	22

#	Article	IF	CITATIONS
19	The role of the PZP domain of AF10 in acute leukemia driven by AF10 translocations. Nature Communications, 2021, 12, 4130.	12.8	8
20	Discovery of Selective Small-Molecule Inhibitors for the ENL YEATS Domain. Journal of Medicinal Chemistry, 2021, 64, 10997-11013.	6.4	20
21	The BTK/PI3K/BRD4 axis inhibitor SRX3262 overcomes Ibrutinib resistance in mantle cell lymphoma. IScience, 2021, 24, 102931.	4.1	7
22	Mechanistic similarities in recognition of histone tails and DNA by epigenetic readers. Current Opinion in Structural Biology, 2021, 71, 1-6.	5.7	10
23	Searching for methyllysine-binding aromatic cages. Biochemical Journal, 2021, 478, 3613-3619.	3.7	3
24	The Novel Multitarget Small-Molecule Inhibitor SRX3177 Overcomes Ibrutinib Resistance in Mantle Cell Lymphoma. Blood, 2021, 138, 2262-2262.	1.4	0
25	Molecular Basis for the PZP Domain of BRPF1 Association with Chromatin. Structure, 2020, 28, 105-110.e3.	3.3	20
26	TCF19 Promotes Cell Proliferation through Binding to the Histone H3K4me3 Mark. Biochemistry, 2020, 59, 389-399.	2.5	20
27	Inhibition of translation and immune responses by the virulence factor Nsp1 of SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5, 234.	17.1	11
28	Design of thienopyranone-based BET inhibitors that bind multiple synthetic lethality targets. Scientific Reports, 2020, 10, 12027.	3.3	9
29	Protocol for Biochemical Analysis and Structure Determination of the ZZ Domain of the E3ÂUbiquitin Ligase HERC2. STAR Protocols, 2020, 1, 100155.	1.2	4
30	A triple action CDK4/6-PI3K-BET inhibitor with augmented cancer cell cytotoxicity. Cell Discovery, 2020, 6, 49.	6.7	10
31	Molecular mechanism of the MORC4 ATPase activation. Nature Communications, 2020, 11, 5466.	12.8	14
32	Structural Insight into Binding of the ZZ Domain of HERC2 to Histone H3 and SUMO1. Structure, 2020, 28, 1225-1230.e3.	3.3	9
33	Exploring epigenetics with chemical tools. Nature Chemistry, 2020, 12, 506-508.	13.6	3
34	Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nature Communications, 2020, 11, 3339.	12.8	15
35	KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Molecular Cell, 2020, 78, 1133-1151.e14.	9.7	26
36	Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Nature Communications, 2020, 11, 2920.	12.8	35

#	Article	IF	CITATIONS
37	MORC3 Forms Nuclear Condensates through Phase Separation. IScience, 2019, 17, 182-189.	4.1	26
38	Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation. Nature Communications, 2019, 10, 4724.	12.8	56
39	E2F1 acetylation directs p300/CBP-mediated histone acetylation at DNA double-strand breaks to facilitate repair. Nature Communications, 2019, 10, 4951.	12.8	45
40	Liquid–liquid phase separation is an intrinsic physicochemical property of chromatin. Nature Structural and Molecular Biology, 2019, 26, 1085-1086.	8.2	23
41	Methylation of Histone H3K79 by Dot1L Requires Multiple Contacts with the Ubiquitinated Nucleosome. Molecular Cell, 2019, 74, 862-863.	9.7	11
42	Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Nature Communications, 2019, 10, 2314.	12.8	40
43	MORC3 Is a Target of the Influenza A Viral Protein NS1. Structure, 2019, 27, 1029-1033.e3.	3.3	15
44	Mechanism for autoinhibition and activation of the MORC3 ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6111-6119.	7.1	25
45	Strategies for Generating Modified Nucleosomes: Applications within Structural Biology Studies. ACS Chemical Biology, 2019, 14, 579-586.	3.4	9
46	Mechanistic insight into the regulation of SQSTM1/p62. Autophagy, 2019, 15, 735-737.	9.1	18
47	The ZZ domain as a new epigenetic reader and a degradation signal sensor. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 1-10.	5.2	20
48	The PHD finger of Spp1 mediates histone modification cross-talk. Biochemical Journal, 2019, 476, 2351-2354.	3.7	1
49	Architecture of PRC2 Holo Complexes. Trends in Biochemical Sciences, 2018, 43, 487-489.	7.5	4
50	Structural insights into the π-π-π stacking mechanism and DNA-binding activity of the YEATS domain. Nature Communications, 2018, 9, 4574.	12.8	45
51	ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nature Communications, 2018, 9, 4373.	12.8	76
52	The ZZ-type zinc finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and gene activation. Nature Communications, 2018, 9, 3759.	12.8	51
53	Diet and the epigenome. Nature Communications, 2018, 9, 3375.	12.8	88
54	Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain. Nucleic Acids Research, 2018, 46, 421-430.	14.5	34

#	Article	IF	CITATIONS
55	A histone reader becomes the readout. Journal of Biological Chemistry, 2018, 293, 7486-7487.	3.4	2
56	Switching 53BP1 on and off via Tudors. Nature Structural and Molecular Biology, 2018, 25, 646-647.	8.2	0
57	Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers. Epigenetics, 2018, 13, 683-692.	2.7	17
58	The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nature Structural and Molecular Biology, 2018, 25, 841-849.	8.2	55
59	Reading epigenetic marks. FASEB Journal, 2018, 32, 474.2.	0.5	Ο
60	Dual-activity PI3K–BRD4 inhibitor for the orthogonal inhibition of MYC to block tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1072-E1080.	7.1	97
61	Recognition of Histone H3K14 Acylation by MORF. Structure, 2017, 25, 650-654.e2.	3.3	41
62	Histone modifications for chromatin dynamics and cellular plasticity. Journal of Molecular Biology, 2017, 429, 1921-1923.	4.2	2
63	PHF1 Tudor and N-terminal domains synergistically target partially unwrapped nucleosomes to increase DNA accessibility. Nucleic Acids Research, 2017, 45, gkw1320.	14.5	27
64	Epigenetic countermarks in mitotic chromosome condensation. Nucleus, 2017, 8, 144-149.	2.2	7
65	Covalent Modifications of Histone H3K9 Promote Binding of CHD3. Cell Reports, 2017, 21, 455-466.	6.4	36
66	Histone H3 Dual Ubiquitylation Mediates Maintenance DNA Methylation. Molecular Cell, 2017, 68, 261-262.	9.7	2
67	YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nature Communications, 2017, 8, 1088.	12.8	102
68	A Unique pH-Dependent Recognition of Methylated Histone H3K4 by PPS and DIDO. Structure, 2017, 25, 1530-1539.e3.	3.3	22
69	The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin. Cell Reports, 2017, 20, 2313-2327.	6.4	86
70	Accessibility of the histone H3 tail in the nucleosome for binding of paired readers. Nature Communications, 2017, 8, 1489.	12.8	67
71	Characterization of histone acylations links chromatin modifications with metabolism. Nature Communications, 2017, 8, 1141.	12.8	145
72	Structural Insight into Recognition of Methylated Histone H3K4 by Set3. Journal of Molecular Biology, 2017, 429, 2066-2074.	4.2	9

#	Article	IF	CITATIONS
73	PHF20 Readers Link Methylation of Histone H3K4 and p53 with H4K16 Acetylation. Cell Reports, 2016, 17, 1158-1170.	6.4	44
74	The Taf14 YEATS domain is a reader of histone crotonylation. Nature Chemical Biology, 2016, 12, 396-398.	8.0	195
75	ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia. Cancer Discovery, 2016, 6, 770-783.	9.4	122
76	Preparation, Biochemical Analysis, and Structure Determination of Methyllysine Readers. Methods in Enzymology, 2016, 573, 345-362.	1.0	3
77	Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. Cell Reports, 2016, 16, 3195-3207.	6.4	40
78	Insights into newly discovered marks and readers of epigenetic information. Nature Chemical Biology, 2016, 12, 662-668.	8.0	132
79	G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nature Communications, 2016, 7, 10810.	12.8	45
80	Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Research, 2016, 44, 6102-6112.	14.5	30
81	Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation. Nucleic Acids Research, 2016, 44, 472-484.	14.5	49
82	Focus on Epigenetics. ACS Chemical Biology, 2016, 11, 541-542.	3.4	0
83	The essential role of acetyllysine binding by the YEATS domain in transcriptional regulation. Transcription, 2016, 7, 14-20.	3.1	28
84	Regulation of Methyllysine Readers through Phosphorylation. ACS Chemical Biology, 2016, 11, 547-553.	3.4	15
85	PHD Fingers as Histone Readers. , 2015, , 27-47.		6
86	An aromatic cage is required but not sufficient for binding of Tudor domains of the Polycomblike protein family to H3K36me3. Epigenetics, 2015, 10, 467-473.	2.7	15
87	O-GlcNAcylation of MLL5β is essential for MLL5β–AP-1 transcription complex assembly at the HPV16/18-long control region. Journal of Molecular Cell Biology, 2015, 7, 180-183.	3.3	10
88	Structural Plasticity of Methyllysine Recognition by the Tandem Tudor Domain of 53BP1. Structure, 2015, 23, 312-321.	3.3	32
89	An Acetyl-Methyl Switch Drives a Conformational Change in p53. Structure, 2015, 23, 322-331.	3.3	21
90	Molecular Insights into Inhibition of the Methylated Histone-Plant Homeodomain Complexes by Calixarenes. Journal of Biological Chemistry, 2015, 290, 22919-22930.	3.4	33

#	Article	IF	CITATIONS
91	Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes and Development, 2015, 29, 1795-1800.	5.9	65
92	Diverse functions of PHD fingers of the MLL/KMT2 subfamily. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 366-371.	4.1	59
93	Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1072-81.	7.1	52
94	Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics, 2014, 9, 186-193.	2.7	64
95	Inhibition of histone binding by supramolecular hosts. Biochemical Journal, 2014, 459, 505-512.	3.7	48
96	Photoactive spatial proximity probes for binding pairs with epigenetic marks. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 290, 101-108.	3.9	1
97	A Chromatin-Dependent Role of the Fragile X Mental Retardation Protein FMRP in the DNA Damage Response. Cell, 2014, 157, 869-881.	28.9	151
98	The Histone-H3K4-Specific Demethylase KDM5B Binds to Its Substrate and Product through Distinct PHD Fingers. Cell Reports, 2014, 6, 325-335.	6.4	145
99	Towards understanding methyllysine readout. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 686-693.	1.9	51
100	The NuRD architecture. Cellular and Molecular Life Sciences, 2013, 70, 3513-3524.	5.4	153
101	Molecular basis for chromatin binding and regulation of MLL5. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11296-11301.	7.1	72
102	Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nature Communications, 2013, 4, 2969.	12.8	77
103	Dido3 PHD Modulates Cell Differentiation and Division. Cell Reports, 2013, 4, 148-158.	6.4	54
104	Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes and Development, 2013, 27, 2009-2024.	5.9	148
105	Mechanisms of Resistance to Crizotinib in Patients with <i>ALK</i> Gene Rearranged Non–Small Cell Lung Cancer. Clinical Cancer Research, 2012, 18, 1472-1482.	7.0	1,018
106	IP4 is an epigenetic coregulator. Nature Chemical Biology, 2012, 8, 230-231.	8.0	4
107	Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 787-792.	7.1	96
108	MBD2 and Multiple Domains of CHD4 Are Required for Transcriptional Repression by Mi-2/NuRD Complexes. Molecular and Cellular Biology, 2012, 32, 5078-5088.	2.3	56

#	Article	IF	CITATIONS
109	Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation. Molecular and Cellular Biology, 2012, 32, 689-703.	2.3	82
110	Tandem PHD Fingers of MORF/MOZ Acetyltransferases Display Selectivity for Acetylated Histone H3 and Are Required for the Association with Chromatin. Journal of Molecular Biology, 2012, 424, 328-338.	4.2	75
111	Perceiving the epigenetic landscape through histone readers. Nature Structural and Molecular Biology, 2012, 19, 1218-1227.	8.2	688
112	Molecular Analysis of Protein–Phosphoinositide Interactions. Current Topics in Microbiology and Immunology, 2012, 362, 111-126.	1.1	9
113	Emerging methodologies to investigate lipid–protein interactions. Integrative Biology (United) Tj ETQq1	1 0.784314 rgBT	/Overlock
114	Histone H3R2 Symmetric Dimethylation and Histone H3K4 Trimethylation Are Tightly Correlated in Eukaryotic Genomes. Cell Reports, 2012, 1, 83-90.	6.4	69
115	Multivalent Recognition of Histone Tails by the PHD Fingers of CHD5. Biochemistry, 2012, 51, 6534-6544.	2.5	46
116	Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nature Structural and Molecular Biology, 2012, 19, 1266-1272.	8.2	174
117	Analysis of resistance mechanisms to ALK kinase inhibitors in ALK+ NSCLC patients Journal of Clinical Oncology, 2012, 30, 7504-7504.	1.6	15
118	Structural Insights into the Role of PHD Fingers in the MOZ/MORF and HBO1 HATs. FASEB Journal, 2012, 26, 533.1.	0.5	0
119	SnapShot: Histone Readers. Cell, 2011, 146, 842-842.e1.	28.9	28
120	Biophysical and Computational Studies of Membrane Penetration by the GRP1 Pleckstrin Homology Domain. Structure, 2011, 19, 1338-1346.	3.3	56
121	Metabolically Stabilized Derivatives of Phosphatidylinositol 4-Phosphate: Synthesis and Applications. Chemistry and Biology, 2011, 18, 1312-1319.	6.0	7
122	Molecular Basis of Phosphatidylinositol 4-Phosphate and ARF1 GTPase Recognition by the FAPP1 Pleckstrin Homology (PH) Domain. Journal of Biological Chemistry, 2011, 286, 18650-18657.	3.4	100
123	Handpicking epigenetic marks with PHD fingers. Nucleic Acids Research, 2011, 39, 9061-9071.	14.5	175
124	Plant Homeodomain (PHD) Fingers of CHD4 Are Histone H3-binding Modules with Preference for Unmodified H3K4 and Methylated H3K9. Journal of Biological Chemistry, 2011, 286, 11779-11791.	3.4	147
125	Methyl fingerprinting of the nucleosome reveals the molecular mechanism of high-mobility group nucleosomal-2 (HMGN2) association. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12189-12190.	7.1	3
126	5‣tabilized Phosphatidylinositol 3,4,5â€Trisphosphate Analogues Bind Grp1 PH, Inhibit Phosphoinositide Phosphatases, and Block Neutrophil Migration. ChemBioChem, 2010, 11, 388-395.	2.6	13

#	Article	IF	CITATIONS
127	Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nature Chemical Biology, 2010, 6, 283-290.	8.0	115
128	Translation of the phosphoinositide code by PI effectors. Nature Chemical Biology, 2010, 6, 507-513.	8.0	217
129	The MBT Repeats of L3MBTL1 Link SET8-mediated p53 Methylation at Lysine 382 to Target Gene Repression. Journal of Biological Chemistry, 2010, 285, 37725-37732.	3.4	86
130	Structural Insight into p53 Recognition by the 53BP1 Tandem Tudor Domain. Journal of Molecular Biology, 2010, 398, 489-496.	4.2	50
131	Molecular Mechanism of MLL PHD3 and RNA Recognition by the Cyp33 RRM Domain. Journal of Molecular Biology, 2010, 400, 145-154.	4.2	40
132	Binding of the MLL PHD3 Finger to Histone H3K4me3 Is Required for MLL-Dependent Gene Transcription. Journal of Molecular Biology, 2010, 400, 137-144.	4.2	88
133	NMR assignments and histone specificity of the ING2 PHD finger. Magnetic Resonance in Chemistry, 2009, 47, 352-358.	1.9	9
134	Membrane insertion of the FYVE domain is modulated by pH. Proteins: Structure, Function and Bioinformatics, 2009, 76, 852-860.	2.6	58
135	ING4 Mediates Crosstalk between Histone H3 K4 Trimethylation and H3 Acetylation to Attenuate Cellular Transformation. Molecular Cell, 2009, 33, 248-256.	9.7	191
136	HBO1 HAT Complexes Target Chromatin throughout Gene Coding Regions via Multiple PHD Finger Interactions with Histone H3 Tail. Molecular Cell, 2009, 33, 257-265.	9.7	163
137	Editorial [Hot Topic: ING Family of Tumor Suppressors (Guest Editor: Tatiana G. Kutateladze)]. Current Drug Targets, 2009, 10, 384-384.	2.1	1
138	Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochemical Journal, 2009, 423, 179-187.	3.7	106
139	PHD Fingers: Epigenetic Effectors and Potential Drug Targets. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 314-323.	3.4	101
140	Structural Insight Into Histone Recognition by the ING PHD Fingers. Current Drug Targets, 2009, 10, 432-441.	2.1	72
141	Sequence-specific 1H, 13C, and 15N resonance assignments of GRP1 PH domain. Biomolecular NMR Assignments, 2008, 2, 97-99.	0.8	0
142	The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins: Structure, Function and Bioinformatics, 2008, 72, 1371-1376.	2.6	78
143	Histone H3K4me3 Binding Is Required for the DNA Repair and Apoptotic Activities of ING1 Tumor Suppressor. Journal of Molecular Biology, 2008, 380, 303-312.	4.2	115
144	Molecular mechanism of membrane targeting by the GRP1 PH domain*. Journal of Lipid Research, 2008, 49, 1807-1815.	4.2	54

#	Article	IF	CITATIONS
145	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. FASEB Journal, 2008, 22, 600.2.	0.5	2
146	Proteome-wide Analysis in Saccharomyces cerevisiae Identifies Several PHD Fingers as Novel Direct and Selective Binding Modules of Histone H3 Methylated at Either Lysine 4 or Lysine 36. Journal of Biological Chemistry, 2007, 282, 2450-2455.	3.4	218
147	Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Progress in Lipid Research, 2007, 46, 315-327.	11.6	51
148	pH-dependent Binding of the Epsin ENTH Domain and the AP180 ANTH Domain to PI(4,5)P2-containing Bilayers. Journal of Molecular Biology, 2007, 373, 412-423.	4.2	39
149	Stabilized Phosphatidylinositol-5-Phosphate Analogues as Ligands for the Nuclear Protein ING2: Chemistry, Biology, and Molecular Modeling. Journal of the American Chemical Society, 2007, 129, 6498-6506.	13.7	39
150	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature, 2007, 450, 1106-1110.	27.8	429
151	Structures and function of PHD fingers of ING tumor suppressors. FASEB Journal, 2007, 21, A283.	0.5	0
152	Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate. Journal of the American Chemical Society, 2006, 128, 885-897.	13.7	40
153	Synthesis and Molecular Recognition of Phosphatidylinositol-3-methylenephosphate. Organic Letters, 2006, 8, 2811-2813.	4.6	12
154	Structural Insights into Histone Demethylation by JMJD2 Family Members. Cell, 2006, 125, 691-702.	28.9	341
155	Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 868-877.	2.4	102
156	Phosphoinositide, Phosphopeptide and Pyridone Interactions of the Abl SH2 Domain. Chemical Biology and Drug Design, 2006, 67, 230-237.	3.2	17
157	Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature, 2006, 442, 100-103.	27.8	609
158	ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 2006, 442, 96-99.	27.8	851
159	Increased mobility in the membrane targeting PX domain induced by phosphatidylinositol 3-phosphate. Protein Science, 2006, 15, 1873-1882.	7.6	9
160	Molecular Mechanism of Membrane Docking by the Vam7p PX Domain. Journal of Biological Chemistry, 2006, 281, 37091-37101.	3.4	71
161	Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13052-13057.	7.1	98
162	Investigation of the Binding Geometry of a Peripheral Membrane Proteinâ€. Biochemistry, 2005, 44, 16064-16071.	2.5	34

#	Article	IF	CITATIONS
163	Multivalent Mechanism of Membrane Insertion by the FYVE Domain. Journal of Biological Chemistry, 2004, 279, 3050-3057.	3.4	89
164	Solution Structure of the C-terminal Antiparallel Coiled-coil Domain from Escherichia coli Osmosensor ProP. Journal of Molecular Biology, 2003, 334, 1063-1076.	4.2	37
165	The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature, 2002, 419, 726-729.	27.8	180
166	Structural Mechanism of Endosome Docking by the FYVE Domain. Science, 2001, 291, 1793-1796.	12.6	203
167	Phosphatidylethanolamine Has an Essential Role inSaccharomyces cerevisiae That Is Independent of Its Ability to Form Hexagonal Phase Structures. Journal of Biological Chemistry, 2001, 276, 48539-48548.	3.4	115
168	Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology, 2001, 3, 613-618.	10.3	388
169	Sequence-specific 1H, 15N and 13C resonance assignments of the EEA1 FYVE domain. , 2000, 17, 89-90.		3
170	Phosphatidylinositol 3-Phosphate Recognition by the FYVE Domain. Molecular Cell, 1999, 3, 805-811.	9.7	172
171	Limits to Catalysis by Ribonuclease A. Bioorganic Chemistry, 1995, 23, 471-481.	4.1	87
172	Mechanism-based inactivation of ribonuclease A. Journal of Organic Chemistry, 1995, 60, 6930-6936.	3.2	48
173	A one-pot trifunctionalization of olefins with benzeneseleninic and trifluoroacetic anhydrides using a commonly undesirable side reaction as a key step. Journal of Organic Chemistry, 1993, 58, 995-996.	3.2	10
174	A one-pot trifunctionalization of olefins with benzeneseleninic and trifluoroacetic anhydrides using a commonly undesirable side reaction as a key step. [Erratum to document cited in CA118(19):191881a]. Journal of Organic Chemistry, 1993, 58, 3222-3222.	3.2	0
175	Superelectrophilic selenium. A new simple method for generation of areneselenenyl trifluoroacetates and triflates Tetrahedron Letters, 1992, 33, 1949-1952.	1.4	22
176	A simple new synthesis of thiobisamines. Journal of Organic Chemistry, 1991, 56, 5235-5236.	3.2	6
177	Nuclear Condensates of p300 Formed Though the Structured Catalytic Core Can Act as a Storage Pool of p300 with Reduced HAT Activity. SSRN Electronic Journal. 0, , .	0.4	0