Hideo Makimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11372669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doubleâ€blind, randomized clinical trial assessing the efficacy and safety of early initiation of sitagliptin during metformin uptitration in the treatment of patients with type 2 diabetes: The CompoSITâ€M study. Diabetes, Obesity and Metabolism, 2019, 21, 1128-1135.	4.4	7
2	FNDC5 relates to skeletal muscle IGF-I and mitochondrial function and gene expression in obese men with reduced growth hormone. Growth Hormone and IGF Research, 2016, 26, 36-41.	1.1	24
3	Metabolic Effects of Long-Term Reduction in Free Fatty Acids With Acipimox in Obesity: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1123-1133.	3.6	19
4	Relationship Between Serum IGF-1 and Skeletal Muscle IGF-1 mRNA Expression to Phosphocreatine Recovery After Exercise in Obese Men With Reduced GH. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 617-625.	3.6	13
5	The Effects of Tesamorelin on Phosphocreatine Recovery in Obese Subjects With Reduced GH. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 338-343.	3.6	15
6	Discordance of IGF-1 and GH stimulation testing for altered GH secretion in obesity. Growth Hormone and IGF Research, 2014, 24, 10-15.	1.1	14
7	Metabolic Effects of a Growth Hormone-Releasing Factor in Obese Subjects with Reduced Growth Hormone Secretion: A Randomized Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4769-4779.	3.6	39
8	Relationship between monocyte/macrophage activation marker soluble CD163 and insulin resistance in obese and normalâ€weight subjects. Clinical Endocrinology, 2012, 77, 385-390.	2.4	67
9	Reduced growth hormone secretion in obesity is associated with smaller LDL and HDL particle size. Clinical Endocrinology, 2012, 76, 220-227.	2.4	27
10	Increased skeletal muscle phosphocreatine recovery after sub-maximal exercise is associated with increased carotid intimaâ \in "media thickness. Atherosclerosis, 2011, 215, 214-217.	0.8	1
11	The Association of Growth Hormone Parameters with Skeletal Muscle Phosphocreatine Recovery in Adult Men. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 817-823.	3.6	19
12	Effects of a Growth Hormone-Releasing Hormone Analog on Endogenous GH Pulsatility and Insulin Sensitivity in Healthy Men. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 150-158.	3.6	43
13	The relationship between reduced testosterone, stimulated growth hormone secretion and increased carotid intimaâ€media thickness in obese men. Clinical Endocrinology, 2010, 73, 622-629.	2.4	4
14	Skeletal Muscle Phosphocreatine Recovery after Submaximal Exercise in Children and Young and Middle-Aged Adults. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E69-E74.	3.6	30
15	Reduced Growth Hormone Secretion Is Associated with Increased Carotid Intima-Media Thickness in Obesity. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5131-5138.	3.6	41
16	Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. Aids, 2009, 23, 1349-1357.	2.2	47
17	The Effects of Central Adiposity on Growth Hormone (GH) Response to GH-Releasing Hormone-Arginine Stimulation Testing in Men. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4254-4260.	3.6	105
18	Impaired glucose signaling as a cause of obesity and the metabolic syndrome: The glucoadipostatic hypothesis. Physiology and Behavior, 2005, 85, 3-23.	2.1	56

HIDEO MAKIMURA

#	Article	IF	CITATIONS
19	Adrenalectomy stimulates hypothalamic proopiomelanocortin expression but does not correct diet-induced obesity. BMC Physiology, 2003, 3, 4.	3.6	17
20	Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiology, 2003, 3, 5.	3.6	70
21	The physiological function of the agouti-related peptide gene: the control of weight and metabolic rate. Annals of Medicine, 2003, 35, 425-433.	3.8	20
22	Adiponectin is stimulated by adrenalectomy inob/ob mice and is highly correlated with resistin mRNA. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1266-E1271.	3.5	71
23	Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neuroscience, 2002, 3, 18.	1.9	131
24	Block the FAS, lose the fat. Nature Medicine, 2002, 8, 335-336.	30.7	77
25	Fasting Regulates Hypothalamic Neuropeptide Y, Agouti-Related Peptide, and Proopiomelanocortin in Diabetic Mice Independent of Changes in Leptin or Insulin1. Endocrinology, 1999, 140, 4551-4557.	2.8	174
26	Fasting Regulates Hypothalamic Neuropeptide Y, Agouti-Related Peptide, and Proopiomelanocortin in Diabetic Mice Independent of Changes in Leptin or Insulin. Endocrinology, 1999, 140, 4551-4557.	2.8	59
27	Defective viral vectors as agents for gene transfer in the nervous system. Journal of Neuroscience Methods, 1997, 71, 125-132.	2.5	43