
Ming Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11372401/publications.pdf Version: 2024-02-01

MINC CAO

#	Article	IF	CITATIONS
1	LncRNA MT1DP promotes cadmium-induced DNA replication stress by inhibiting chromatin recruitment of SMARCAL1. Science of the Total Environment, 2022, 807, 151078.	8.0	7
2	m6A demethylation of cytidine deaminase APOBEC3B mRNA orchestrates arsenic-induced mutagenesis. Journal of Biological Chemistry, 2022, 298, 101563.	3.4	10
3	The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1. Oncogene, 2022, 41, 4018-4027.	5.9	8
4	Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience, 2021, 43, 487-505.	4.6	22
5	DOCK7 protects against replication stress by promoting RPA stability on chromatin. Nucleic Acids Research, 2021, 49, 3322-3337.	14.5	11
6	USP13 regulates the replication stress response by deubiquitinating TopBP1. DNA Repair, 2021, 100, 103063.	2.8	10
7	ASTE1 promotes shieldin-complex-mediated DNA repair by attenuating end resection. Nature Cell Biology, 2021, 23, 894-904.	10.3	28
8	RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination. Nature Communications, 2021, 12, 6653.	12.8	7
9	Liver-derived exosome-laden IncRNA MT1DP aggravates cadmium-induced nephrotoxicity. Environmental Pollution, 2020, 258, 113717.	7.5	25
10	N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochemical Pharmacology, 2020, 182, 114258.	4.4	43
11	The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization. Nucleic Acids Research, 2020, 48, 12711-12726.	14.5	26
12	Current understanding of extrachromosomal circular DNA in cancer pathogenesis and therapeutic resistance. Journal of Hematology and Oncology, 2020, 13, 124.	17.0	36
13	Tandem Deubiquitination and Acetylation of SPRTN Promotes DNA-Protein Crosslink Repair and Protects against Aging. Molecular Cell, 2020, 79, 824-835.e5.	9.7	29
14	LncRNA UCA1 Antagonizes Arsenicâ€Induced Cell Cycle Arrest through Destabilizing EZH2 and Facilitating NFATc2 Expression. Advanced Science, 2020, 7, 1903630.	11.2	19
15	TCDD promotes liver fibrosis through disordering systemic and hepatic iron homeostasis. Journal of Hazardous Materials, 2020, 395, 122588.	12.4	22
16	LncRNA PU.1 AS regulates arsenic-induced lipid metabolism through EZH2/Sirt6/SREBP-1c pathway. Journal of Environmental Sciences, 2019, 85, 138-146.	6.1	22
17	Diagnostic significance of metallothionein members in recognizing cadmium exposure in various organs under low-dose exposure. Chemosphere, 2019, 229, 32-40.	8.2	17
18	Protein target identification and toxicological mechanism investigation of silver nanoparticles-induced hepatotoxicity by integrating proteomic and metallomic strategies. Particle and Fibre Toxicology, 2019, 16, 46.	6.2	20

Ming Gao

#	Article	IF	CITATIONS
19	Transcriptional repression of IKKβ by p53 in arsenite-induced GADD45α accumulation and apoptosis. Oncogene, 2019, 38, 731-746.	5.9	13
20	Silver Nanoparticles Compromise Female Embryonic Stem Cell Differentiation through Disturbing X Chromosome Inactivation. ACS Nano, 2019, 13, 2050-2061.	14.6	10
21	Long non-coding RNA MT1DP shunts the cellular defense to cytotoxicity through crosstalk with MT1H and RhoC in cadmium stress. Cell Discovery, 2018, 4, 5.	6.7	31
22	Low-dose exposure to graphene oxide significantly increases the metal toxicity to macrophages by altering their cellular priming state. Nano Research, 2018, 11, 4111-4122.	10.4	19
23	LncRNA UCA1 attenuates autophagy-dependent cell death through blocking autophagic flux under arsenic stress. Toxicology Letters, 2018, 284, 195-204.	0.8	40
24	Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. NPG Asia Materials, 2018, 10, e458-e458.	7.9	58
25	Preliminary investigation on cytotoxicity of fluorinated polymer nanoparticles. Journal of Environmental Sciences, 2018, 69, 217-226.	6.1	19
26	Multihierarchically Profiling the Biological Effects of Various Metal-Based Nanoparticles in Macrophages under Low Exposure Doses. ACS Sustainable Chemistry and Engineering, 2018, 6, 10374-10384.	6.7	16
27	Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale, 2018, 10, 14637-14650.	5.6	23
28	LncRNA MT1DP Aggravates Cadmiumâ€Induced Oxidative Stress by Repressing the Function of Nrf2 and is Dependent on Interaction with miRâ€365. Advanced Science, 2018, 5, 1800087.	11.2	48
29	Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents. ACS Nano, 2017, 11, 2637-2651.	14.6	110
30	Genomeâ€Wide DNA Methylation Variations upon Exposure to Engineered Nanomaterials and Their Implications in Nanosafety Assessment. Advanced Materials, 2017, 29, 1604580.	21.0	41
31	Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells. Biomaterials, 2017, 130, 14-27.	11.4	39
32	EPO-dependent induction of erythroferrone drives hepcidin suppression and systematic iron absorption under phenylhydrazine-induced hemolytic anemia. Blood Cells, Molecules, and Diseases, 2016, 58, 45-51.	1.4	35
33	miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radical Biology and Medicine, 2016, 92, 39-49.	2.9	43
34	Hepassocin is required for hepatic outgrowth during zebrafish hepatogenesis. Biochemical and Biophysical Research Communications, 2015, 463, 466-471.	2.1	8
35	Hepassocin activates the EGFR/ERK cascade and induces proliferation of LO2 cells through the Src-dependent pathway. Cellular Signalling, 2014, 26, 2161-2166.	3.6	39
36	Ribosomal protein S7 regulates arsenite-induced GADD45Â expression by attenuating MDM2-mediated GADD45Â ubiquitination and degradation. Nucleic Acids Research, 2013, 41, 5210-5222.	14.5	21

Ming Gao

#	Article	IF	CITATIONS
37	IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. Nucleic Acids Research, 2012, 40, 2940-2955.	14.5	40
38	IKKβ downregulation is critical for triggering JNKs-dependent cell apoptotic response in the human hepatoma cells under arsenite exposure. Molecular and Cellular Biochemistry, 2011, 358, 61-66.	3.1	3
39	A novel role of IKKα in the mediation of UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 323-332.	4.1	14
40	GADD45α mediates arseniteâ€induced cell apoptotic effect in human hepatoma cells via JNKs/APâ€1â€dependen pathway. Journal of Cellular Biochemistry, 2010, 109, 1264-1273.	t 2.6	15
41	Diverse Roles of GADD45α in Stress Signaling. Current Protein and Peptide Science, 2009, 10, 388-394.	1.4	41
42	Remarkable Electronic and Steric Effects in the Nitrile Biotransformations for the Preparation of Enantiopure Functionalized Carboxylic Acids and Amides:Â Implication for an Unsaturated Carbonâ^'Carbon Bond Binding Domain of the Amidase. Journal of Organic Chemistry, 2007, 72, 6060-6066.	3.2	29
43	An Unusual β-Vinyl Effect Leading to High Efficiency and Enantioselectivity of the Amidase, Nitrile Biotransformations for the Preparation of Enantiopure 3-Arylpent-4-enoic Acids and Amides and Their Applications in Synthesis, Journal of Organic Chemistry, 2006, 71, 9532-9535.	3.2	37