Yao Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11370764/publications.pdf

Version: 2024-02-01

19	843	13	18
papers	citations	h-index	g-index
19	19	19	2041 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Polymer-Embedded Fabrication of Co ₂ P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation. Nano Letters, 2016, 16, 4691-4698.	9.1	306
2	Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors. Nano Energy, 2018, 49, 200-208.	16.0	96
3	Pâ€GaSe/Nâ€MoS ₂ Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation. Small, 2018, 14, 1702731.	10.0	87
4	Inversion Symmetry Broken 2D 3Râ€MoTe ₂ . Advanced Functional Materials, 2018, 28, 1800785.	14.9	63
5	Sub-5â€nm edge-rich 1T′-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage. Nano Energy, 2019, 58, 660-668.	16.0	41
6	Stacking-Mode-Induced Reactivity Enhancement for Twisted Bilayer Graphene. Chemistry of Materials, 2016, 28, 1034-1039.	6.7	35
7	Engineering sub-100Ânm Mo _(1â°'x) W _x Se ₂ crystals for efficient hydrogen evolution catalysis. Journal of Materials Chemistry A, 2018, 6, 2900-2907.	10.3	34
8	Polymer-confined growth of perforated MoSe ₂ single-crystals on N-doped graphene toward enhanced hydrogen evolution. Nanoscale, 2017, 9, 4652-4659.	5.6	30
9	Shuttle Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5534-5542.	8.0	27
10	Grain size control in the fabrication of large single-crystal bilayer graphene structures. Nanoscale, 2015, 7, 2391-2399.	5.6	22
11	New Approach to Unveiling Individual Atomic Layers of 2D Materials and Their Heterostructures. Chemistry of Materials, 2018, 30, 1718-1728.	6.7	19
12	Edge-Epitaxial Growth of Graphene on Cu with a Hydrogen-Free Approach. Chemistry of Materials, 2019, 31, 2555-2562.	6.7	19
13	Concurrent fast growth of sub-centimeter single-crystal graphene with controlled nucleation density in a confined channel. Nanoscale, 2017, 9, 9631-9640.	5.6	17
14	Confinement-Enhanced Rapid Interlayer Diffusion within Graphene-Supported Anisotropic ReSe ₂ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 31147-31154.	8.0	13
15	Recoil Effect and Photoemission Splitting of Trions in Monolayer MoS ₂ . ACS Nano, 2017, 11, 10808-10815.	14.6	11
16	Stacking Modes-Induced Chemical Reactivity Differences on Chemical Vapor Deposition-Grown Trilayer Graphene. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23424-23431.	8.0	10
17	Controlled removal of monolayers for bilayer graphene preparation and visualization. RSC Advances, 2015, 5, 25471-25476.	3.6	8
18	Tellurium-assisted and space-confined growth of graphene single crystals. Carbon, 2021, 173, 54-60.	10.3	5

ARTICLE IF CITATIONS

19 Synthesis of large-size graphene by chemical vapor deposition., 2015,,. 0