
Wei-Xian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11370261/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight. Journal of Hazardous Materials, 2022, 427, 127896.	12.4	18
2	How to Build a Microplasticsâ€Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Advanced Science, 2022, 9, e2103764.	11.2	87
3	Wet Milling of Zerovalent Iron in Sulfide Solution: Preserving and Securing the Metallic Iron. ACS ES&T Engineering, 2022, 2, 703-712.	7.6	7
4	Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants. Journal of Environmental Sciences, 2022, 118, 140-146.	6.1	6
5	Electrocatalytic reduction of nitrate – a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51, 2710-2758.	38.1	323
6	Probing the performance and mechanisms of Congo red wastewater decolorization with nanoscale zero-valent iron in the continuing flow reactor. Journal of Cleaner Production, 2022, 346, 131201.	9.3	11
7	Nanocelluloses affixed nanoscale Zero-Valent Iron (nZVI) for nickel removal: Synthesis, characterization and mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 107466.	6.7	30
8	A win-win solution to chromate removal by sulfidated nanoscale zero-valent iron in sludge. Journal of Hazardous Materials, 2022, 432, 128683.	12.4	16
9	<i>In situ</i> characterization of aggregates of nanoscale zero-valent iron (nZVI) in water: an engineering aspect. Environmental Science: Nano, 2022, 9, 3331-3342.	4.3	3
10	Enhanced aggregation and sedimentation of nanoscale zero-valent iron (nZVI) with polyacrylamide modification. Chemosphere, 2021, 263, 127875.	8.2	14
11	Probing pollutant reactions at the iron surface: a case study on selenite reactions with nanoscale zero-valent iron. Environmental Science: Nano, 2021, 8, 2650-2659.	4.3	10
12	Enrichment of uranium from wastewater with nanoscale zero-valent iron (nZVI). Environmental Science: Nano, 2021, 8, 666-674.	4.3	19
13	Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect. Acta Chimica Sinica, 2021, 79, 1008.	1.4	4
14	Biofilm Community Structures and Opportunistic Pathogen Gene Markers in Drinking Water Mains and the Role of Pipe Materials. ACS ES&T Water, 2021, 1, 630-640.	4.6	11
15	Single iron atom catalysis: An environmental perspective. Nano Today, 2021, 38, 101117.	11.9	17
16	Enhanced activity and selectivity of electrocatalytic denitrification by highly dispersed CuPd bimetals on reduced graphene oxide. Chemical Engineering Journal, 2021, 416, 129074.	12.7	24
17	Visualizing Trace Pollutants in Solids at Nanoscale via Electron Tomography. Environmental Science & Technology, 2021, 55, 11533-11537.	10.0	2
18	Transformation of nanoscale zero-valent iron with antimony: Effects of the Sb spatial configuration. Chemical Engineering Journal, 2021, 416, 129073.	12.7	24

#	Article	IF	CITATIONS
19	Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification. Chemical Engineering Journal, 2021, 417, 129160.	12.7	34
20	Architectural Genesis of Metal(loid)s with Iron Nanoparticle in Water. Environmental Science & Technology, 2021, 55, 12801-12808.	10.0	5
21	Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. Journal of Materials Chemistry A, 2020, 8, 17174-17184.	10.3	43
22	Iron-Catalyzed Selective Denitrification over N-Doped Mesoporous Carbon. ACS Applied Materials & Interfaces, 2020, 12, 28091-28099.	8.0	29
23	Nanodenitrification with bimetallic nanoparticles confined in N-doped mesoporous carbon. Environmental Science: Nano, 2020, 7, 1496-1506.	4.3	26
24	Nano-spatially confined Pd–Cu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification. Journal of Materials Chemistry A, 2020, 8, 9545-9553.	10.3	35
25	Nitrogen-doped iron for selective catalytic reduction of nitrate to dinitrogen. Science Bulletin, 2020, 65, 926-933.	9.0	47
26	Pb(II) deposition-reduction-growth onto iron nanoparticles induced by graphitic carbon nitride. Chemical Engineering Journal, 2020, 387, 124088.	12.7	19
27	Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 2020, 56, 2795-2798.	4.1	13
28	Fe/Fe ₃ C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. Journal of Materials Chemistry A, 2020, 8, 15853-15863.	10.3	96
29	Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes. Chemosphere, 2019, 237, 124470.	8.2	36
30	Recovery of gold from wastewater using nanoscale zero-valent iron. Environmental Science: Nano, 2019, 6, 519-527.	4.3	17
31	Spatially Confined Tuning the Interfacial Synergistic Catalysis in Mesochannels toward Selective Catalytic Reduction. ACS Applied Materials & amp; Interfaces, 2019, 11, 19242-19251.	8.0	19
32	Synthesis of mesoporous silica-carbon microspheres via self-assembly and in-situ carbonization for efficient adsorption of Di-n-butyl phthalate. Chemical Engineering Journal, 2019, 369, 854-862.	12.7	28
33	Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). Journal of Environmental Sciences, 2019, 81, 28-33.	6.1	23
34	Bimetallic PdCu Nanocrystals Immobilized by Nitrogen-Containing Ordered Mesoporous Carbon for Electrocatalytic Denitrification. ACS Applied Materials & Interfaces, 2019, 11, 3861-3868.	8.0	57
35	Enrichment of Precious Metals from Wastewater with Core–Shell Nanoparticles of Iron. Advanced Materials, 2018, 30, e1705703.	21.0	97
36	Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Journal of Environmental Sciences, 2018, 67, 4-13.	6.1	67

#	Article	IF	CITATIONS
37	Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. Chemosphere, 2018, 201, 603-611.	8.2	38
38	Selective Nitrate Reduction to Dinitrogen by Electrocatalysis on Nanoscale Iron Encapsulated in Mesoporous Carbon. Environmental Science & Technology, 2018, 52, 230-236.	10.0	175
39	Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective. Science Bulletin, 2018, 63, 1641-1648.	9.0	38
40	The colorful chemistry of nanoscale zero-valent iron (nZVI). Journal of Environmental Sciences, 2018, 67, 1-3.	6.1	6
41	Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. Chemical Communications, 2018, 54, 5887-5890.	4.1	24
42	Porous arbon onfined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction. Chemistry - A European Journal, 2018, 24, 15663-15668.	3.3	15
43	Visualization of Silver Nanoparticle Formation on Nanoscale Zero-Valent Iron. Environmental Science and Technology Letters, 2018, 5, 520-525.	8.7	25
44	Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 2017, 322, 163-171.	12.4	301
45	Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. Journal of Hazardous Materials, 2017, 322, 129-135.	12.4	209
46	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017, 5, 4478-4485.	10.3	62
47	Visualizing Arsenate Reactions and Encapsulation in a Single Zero-Valent Iron Nanoparticle. Environmental Science & Technology, 2017, 51, 2288-2294.	10.0	80
48	Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH. Chemosphere, 2017, 168, 1597-1603.	8.2	37
49	Mapping the Reactions in a Single Zero-Valent Iron Nanoparticle. Environmental Science & Technology, 2017, 51, 14293-14300.	10.0	71
50	Genesis of pure Se(0) nano- and micro-structures in wastewater with nanoscale zero-valent iron (nZVI). Environmental Science: Nano, 2017, 4, 52-59.	4.3	37
51	Heavy Metal-nZVI Reactions: the Core-shell Structure and Applications for Heavy Metal Treatment. Acta Chimica Sinica, 2017, 75, 529.	1.4	16
52	Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodiumâ€Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1500464.	3.7	60
53	Enhanced sequestration of large-sized dissolved organic micropollutants in polymeric membranes incorporated with mesoporous carbon. RSC Advances, 2016, 6, 81477-81484.	3.6	5
54	Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): A comparative study. Chemical Engineering Journal, 2016, 304, 79-88.	12.7	73

#	Article	IF	CITATIONS
55	The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): Aggregation, sedimentation, and reactivity with Ni(II) in water. Chemical Engineering Journal, 2016, 303, 268-274.	12.7	62
56	Ordered mesoporous silica/polyvinylidene fluoride composite membranes for effective removal of water contaminants. Journal of Materials Chemistry A, 2016, 4, 3850-3857.	10.3	28
57	Enrichment and Encapsulation of Uranium with Iron Nanoparticle. Journal of the American Chemical Society, 2015, 137, 2788-2791.	13.7	177
58	Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV). Water Research, 2015, 71, 274-281.	11.3	195
59	TiO ₂ interpenetrating networks decorated with SnO ₂ nanocrystals: enhanced activity of selective catalytic reduction of NO with NH ₃ . Journal of Materials Chemistry A, 2015, 3, 1405-1409.	10.3	24
60	Preparation of a mesoporous Cu–Mn/TiO ₂ composite for the degradation of Acid Red 1. Journal of Materials Chemistry A, 2015, 3, 7399-7405.	10.3	23
61	Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18, 133-142.	16.0	238
62	Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nature Communications, 2015, 6, 8689.	12.8	374
63	Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR. Journal of Materials Chemistry A, 2015, 3, 19168-19176.	10.3	40
64	Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 2015, 119, 1068-1074.	8.2	158
65	Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide: Performance, characterization and implication. Chemical Engineering Journal, 2015, 260, 616-622.	12.7	29
66	Boric acid assisted formation of mesostructured silica: from hollow spheres to hierarchical assembly. RSC Advances, 2014, 4, 20069-20076.	3.6	19
67	Mapping the reactions of hexavalent chromium [Cr(<scp>vi</scp>)] in iron nanoparticles using spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analytical Methods, 2014, 6, 3211-3214.	2.7	16
68	Sequestration of Arsenate in Zero-Valent Iron Nanoparticles: Visualization of Intraparticle Reactions at Angstrom Resolution. Environmental Science and Technology Letters, 2014, 1, 305-309.	8.7	52
69	Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 2014, 50, 713-715.	4.1	40
70	Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(<scp>ii</scp>) wastewater: a field demonstration. Environmental Sciences: Processes and Impacts, 2014, 16, 524-533.	3.5	78
71	Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Advances, 2014, 4, 57377-57382.	3.6	170
72	Structures of Pd–Fe(0) bimetallic nanoparticles near 0.1 nm resolution. RSC Advances, 2014, 4, 33861.	3.6	13

#	Article	IF	CITATIONS
73	A triblock-copolymer-templating route to carbon spheres@SBA-15 large mesopore core–shell and hollow structures. RSC Advances, 2014, 4, 48676-48681.	3.6	4
74	Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analyst, The, 2014, 139, 4512-4518.	3.5	58
75	Controllable fabrication of dendritic mesoporous silica–carbon nanospheres for anthracene removal. Journal of Materials Chemistry A, 2014, 2, 11045.	10.3	33
76	Reactions of Nanoscale Zero-Valent Iron with Ni(II): Three-Dimensional Tomography of the "Hollow Out―Effect in a Single Nanoparticle. Environmental Science and Technology Letters, 2014, 1, 209-213.	8.7	36
77	Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid. Chemosphere, 2014, 107, 218-223.	8.2	83
78	Mesoporous Silicaâ€Coated Plasmonic Nanostructures for Surfaceâ€Enhanced Raman Scattering Detection and Photothermal Therapy. Advanced Healthcare Materials, 2014, 3, 1620-1628.	7.6	65
79	Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: A pilot-scale demonstration. Chemical Engineering Journal, 2014, 254, 115-123.	12.7	88
80	Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Sciences: Processes and Impacts, 2013, 15, 63-77.	3.5	316
81	Nanoscale Zero-Valent Iron (nZVI) for Site Remediation. , 2012, , 25-48.		0
82	As(III) Sequestration by Iron Nanoparticles: Study of Solid-Phase Redox Transformations with X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 5303-5311.	3.1	128
83	Renewable hydrogen generation by bimetallic zero valent iron nanoparticles. Chemical Engineering Journal, 2011, 170, 562-567.	12.7	85
84	Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 2011, 170, 482-491.	12.7	156
85	Hexachlorocyclohexanes in the Environment: Mechanisms of Dechlorination. Critical Reviews in Environmental Science and Technology, 2011, 41, 1747-1792.	12.8	36
86	Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 2010, 118, 96-104.	3.3	281
87	Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: Role of nano-Ni and its size effect. Journal of Hazardous Materials, 2010, 180, 79-85.	12.4	87
88	Reduction of Cr(VI) by Nanoscale Zero Valent Iron (nZVI): The Reaction Kinetics. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	2
89	Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core–shell structure. Chemical Communications, 2010, 46, 6995.	4.1	61
90	Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environmental Science & Technology, 2010, 44, 4288-4294.	10.0	162

#	Article	IF	CITATIONS
91	Reply to "Comments on â€~Stoichiometry of Cr(VI) Immobilization Using Nanoscale Zerovalent Iron (nZVI): A Study with High-Resolution X-ray Photoelectron Spectroscopy (HR-XPS)'― Industrial & Engineering Chemistry Research, 2009, 48, 2298-2298.	3.7	6
92	Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 2009, 11, 1618.	9.0	159
93	Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding the Significance of the Coreâ^'Shell Structure. Journal of Physical Chemistry C, 2009, 113, 14591-14594.	3.1	232
94	Degradation of Lindane by Zero-Valent Iron Nanoparticles. Journal of Environmental Engineering, ASCE, 2009, 135, 317-324.	1.4	134
95	Stoichiometry of Cr(VI) Immobilization Using Nanoscale Zerovalent Iron (nZVI):  A Study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research, 2008, 47, 2131-2139.	3.7	309
96	Enhanced Biological Treatment of Industrial Wastewater With Bimetallic Zero-Valent Iron. Environmental Science & Technology, 2008, 42, 5384-5389.	10.0	175
97	Temperature Programmed Reduction for Measurement of Oxygen Content in Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2008, 42, 3780-3785.	10.0	26
98	Oxidation of Lindane with Fe(II)-Activated Sodium Persulfate. Environmental Engineering Science, 2008, 25, 221-228.	1.6	82
99	Determination of the Oxide Layer Thickness in Coreâ^'Shell Zerovalent Iron Nanoparticles. Langmuir, 2008, 24, 4329-4334.	3.5	204
100	Zerovalent Iron Nanoparticles for Treatment of Ground Water Contaminated by Hexachlorocyclohexanes. Journal of Environmental Quality, 2008, 37, 2192-2201.	2.0	40
101	Sequestration of Metal Cations with Zerovalent Iron NanoparticlesA Study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS). Journal of Physical Chemistry C, 2007, 111, 6939-6946.	3.1	509
102	Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental, 2007, 77, 110-116.	20.2	292
103	A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308, 60-66.	4.7	341
104	Comparison of reductive dechlorination of p-chlorophenol using FeO and nanosized FeO. Journal of Hazardous Materials, 2007, 144, 334-339.	12.4	171
105	Stabilization of biosolids with nanoscale zero-valent iron (nZVI). Journal of Nanoparticle Research, 2007, 9, 233-243.	1.9	120
106	Nanoscale Zero-Valent Iron (nZVI) for Site Remediation. , 2007, , 25-48.		3
107	Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State and Materials Sciences, 2006, 31, 111-122.	12.3	878
108	Iron Nanoparticles:Â the Coreâ^'Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir, 2006, 22, 4638-4642.	3.5	406

#	Article	IF	CITATIONS
109	Nanoscale Bimetallic Pd/Fe Particles for Remediation of Halogenated Methanes. , 2006, , 187-205.		1
110	Applications of iron nanoparticles for groundwater remediation. Remediation, 2006, 16, 7-21.	2.4	210
111	Nanotechnology and groundwater remediation: A step forward in technology understanding. Remediation, 2006, 16, 23-33.	2.4	64
112	Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 2006, 120, 47-56.	14.7	828
113	Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials, 2006, 132, 213-219.	12.4	154
114	Perchlorate Reduction by Nanoscale Iron Particles. Journal of Nanoparticle Research, 2005, 7, 499-506.	1.9	200
115	Nanoporous zero-valent iron. Journal of Materials Research, 2005, 20, 3238-3243.	2.6	19
116	Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles. Journal of Environmental Engineering, ASCE, 2005, 131, 4-10.	1.4	93
117	Environmental Technologies at the Nanometer-Scale. ACS Symposium Series, 2004, , 7-12.	0.5	0
118	Iron Nanoparticles for Site Remediation. ACS Symposium Series, 2004, , 248-255.	0.5	1
119	Nanoscale Iron Particles for Environmental Remediation: An Overview. Journal of Nanoparticle Research, 2003, 5, 323-332.	1.9	1,715
120	Peer Reviewed: Environmental Technologies at the Nanoscale. Environmental Science & Technology, 2003, 37, 102A-108A.	10.0	506
121	Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environmental Science & Technology, 2001, 35, 4922-4926.	10.0	808
122	Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191, 97-105.	4.7	298
123	Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes. Industrial & Engineering Chemistry Research, 2000, 39, 2238-2244.	3.7	213
124	Transformation of Chlorinated Methanes by Nanoscale Iron Particles. Journal of Environmental Engineering, ASCE, 1999, 125, 1042-1047.	1.4	187
125	Bioavailability of Hydrophobic Organic Contaminants: Effects and Implications of Sorption-Related Mass Transfer on Bioremediation. Ground Water Monitoring and Remediation, 1998, 18, 126-138.	0.8	69
126	Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40, 387-395.	4.4	531

#	Article	IF	CITATIONS
127	Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31, 2154-2156.	10.0	1,446
128	Biodegradation of benzene, toluene and naphthalene in soil-water slurry microcosms. Biodegradation, 1997, 8, 167-175.	3.0	53
129	Pollutants Transformation by Metal Nanoparticles in Confined Nanospaces. Environmental Science: Nano, 0, , .	4.3	1