Mari Asami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11370057/publications.pdf Version: 2024-02-01

MADI ASAMI

#	Article	IF	CITATIONS
1	Occurrence of Pepper Mild Mottle Virus in Drinking Water Sources in Japan. Applied and Environmental Microbiology, 2013, 79, 7413-7418.	3.1	212
2	A nationwide survey of NDMA in raw and drinking water in Japan. Science of the Total Environment, 2009, 407, 3540-3545.	8.0	150
3	Occurrence of perchlorate in drinking water sources of metropolitan area in Japan. Water Research, 2007, 41, 3474-3482.	11.3	115
4	Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC). Water Research, 1999, 33, 2797-2804.	11.3	89
5	Identification of Antiyellowing Agents as Precursors of <i>N</i> -Nitrosodimethylamine Production on Ozonation from Sewage Treatment Plant Influent. Environmental Science & Technology, 2009, 43, 5236-5241.	10.0	88
6	Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds. Chemosphere, 2008, 73, 1724-1730.	8.2	73
7	Formation of 2,6-dichloro-1,4-benzoquinone from aromatic compounds after chlorination. Water Research, 2017, 110, 48-55.	11.3	53
8	ldentification of a New <i>N</i> -Nitrosodimethylamine Precursor in Sewage Containing Industrial Effluents. Environmental Science & Technology, 2014, 48, 11243-11250.	10.0	51
9	Occurrence and formation potential of N-nitrosodimethylamine in ground water and river water in Tokyo. Water Research, 2011, 45, 3369-3377.	11.3	47
10	Occurrence of Viruses and Protozoa in Drinking Water Sources of Japan and Their Relationship to Indicator Microorganisms. Food and Environmental Virology, 2012, 4, 93-101.	3.4	36
11	Occurrence of Chlorate and Perchlorate in Bottled Beverages in Japan. Journal of Health Science, 2009, 55, 549-553.	0.9	35
12	Bromate, chlorate, chlorite and perchlorate in sodium hypochlorite solution used in water supply. Journal of Water Supply: Research and Technology - AQUA, 2009, 58, 107-115.	1.4	31
13	National trends in pesticides in drinking water and water sources in Japan. Science of the Total Environment, 2020, 744, 140930.	8.0	27
14	Application of real-time PCR assays to genotyping of F-specific phages in river water and sediments in Japan. Water Research, 2009, 43, 3759-3764.	11.3	24
15	Contribution of tap water to chlorate and perchlorate intake: A market basket study. Science of the Total Environment, 2013, 463-464, 199-208.	8.0	23
16	<i>N</i> -Nitrosodimethylamine Formation from Hydrazine Compounds on Ozonation. Ozone: Science and Engineering, 2014, 36, 215-220.	2.5	22
17	Formaldehyde formation from tertiary amine derivatives during chlorination. Science of the Total Environment, 2014, 488-489, 325-332.	8.0	13
18	Analysis and Occurrence of 2,6-Dichloro-1,4-benzoquinone in Drinking Water by Liquid Chromatography-Tandem Mass Spectrometry. Journal of Japan Society on Water Environment, 2015, 38, 67-73.	0.4	10

Mari Asami

#	Article	IF	CITATIONS
19	Presence of the Î ² -triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters. Chemosphere, 2017, 178, 333-339.	8.2	9
20	Chemical and Biological Influence of Hazardous Substances and Obstacle Organisms to Aquatic Environment and Their Control. Bromate Ion Formation Inhibition by Coexisting Organic Matters in Ozonation Process Journal of Japan Society on Water Environment, 1996, 19, 930-936.	0.4	8
21	Analytical Method for Perchlorate in Water by Liquid Chromatography-Mass Spectrometry Using an Ion Exchange Column. Analytical Sciences, 2009, 25, 453-456.	1.6	8
22	Is the default of 2 liters for daily per-capita water consumption appropriate? A nationwide survey reveals water intake in Japan. Journal of Water and Health, 2018, 16, 562-573.	2.6	8
23	Analysis of Bromate in Drinking Water Using Liquid Chromatography-Tandem Mass Spectrometry without Sample Pretreatment. Analytical Sciences, 2011, 27, 1091-1095.	1.6	7
24	Occurrence of Perchlorate in Water Purification Plants in Tone River Basin. Journal of Japan Society on Water Environment, 2007, 30, 361-367.	0.4	6
25	Annual and Diurnal Profiles of Cryptosporidium and Giardia in River Water in Japan. Journal of Water and Environment Technology, 2011, 9, 225-233.	0.7	2
26	OCCURRENCE OF CHLORATE AND PERCHLORATE IN GROUNDWATER IN TOKYO. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, 10-18.	0.1	2
27	Generation Characteristics of Chlorate and Perchlorate in Electrolysis of Salt Water Using Six Anodes of Different Materials. Journal of Japan Society on Water Environment, 2014, 37, 189-195.	0.4	2
28	Practicability of Molecular Analysis for Testing Cryptosporidium and Giardia in Water. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, III_631-III_637.	0.1	0
29	Effects of Coexisting Matters on Photodegradation and Reformation of N-Nitrosodimethylamine. Journal of Japan Society on Water Environment, 2013, 36, 175-181.	0.4	0
30	Determination of a <i>N</i> -Nitrosodimethylamine Precursor in Water Using Ultra-high Performance Liquid Chromatography–Tandem Mass Spectrometry. Analytical Sciences, 2015, 31, 769-772.	1.6	0
31	Removal of 2,6-dichloro-1,4-benzoquinone Precursors during Advanced Water Purification Process. Ozone: Science and Engineering, 2022, 44, 208-216.	2.5	0