Shailesh Kundalwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas barrier performance of graphene/polymer nanocomposites. Carbon, 2016, 98, 313-333.	5.4	514
2	Multiscale modeling of carbon nanotube epoxy composites. Polymer, 2015, 70, 149-160.	1.8	138
3	Strain gradient polarization in graphene. Carbon, 2017, 117, 462-472.	5.4	109
4	Micromechanical analysis of fuzzy fiber reinforced composites. International Journal of Mechanics and Materials in Design, 2011, 7, 149-166.	1.7	88
5	Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Composite Structures, 2015, 131, 545-555.	3.1	87
6	Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mechanics of Materials, 2012, 53, 47-60.	1.7	76
7	Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mechanics of Materials, 2016, 102, 117-131.	1.7	75
8	Review on micromechanics of nano―and microâ€fiber reinforced composites. Polymer Composites, 2018, 39, 4243-4274.	2.3	72
9	Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mechanica, 2018, 229, 2571-2584.	1.1	56
10	Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. European Journal of Mechanics, A/Solids, 2017, 64, 69-84.	2.1	54
11	Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mechanica, 2015, 226, 2035-2052.	1.1	52
12	Smart damping of fuzzy fiber reinforced composite plates using 1–3 piezoelectric composites. JVC/Journal of Vibration and Control, 2016, 22, 1526-1546.	1.5	48
13	Static and dynamic response of graphene nanocomposite plates with flexoelectric effect. Mechanics of Materials, 2019, 134, 69-84.	1.7	48
14	Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components. Microelectronics Reliability, 2021, 121, 114144.	0.9	45
15	Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites. Smart Materials and Structures, 2013, 22, 105001.	1.8	44
16	Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon, 2017, 125, 180-188.	5.4	44
17	Control of large amplitude vibrations of doubly curved sandwich shells composed of fuzzy fiber reinforced composite facings. Aerospace Science and Technology, 2017, 70, 10-28.	2.5	39
18	Mechanical and fracture behavior of MWCNT/ZrO ₂ /epoxy nanocomposite systems: Experimental and numerical study. Polymer Composites, 2020, 41, 2491-2507.	2.3	39

#	Article	IF	CITATIONS
19	Effect of Carbon Nanotube Waviness on the Elastic Properties of the Fuzzy Fiber Reinforced Composites. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	38
20	Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: A comprehensive computational study. Computational Materials Science, 2019, 156, 332-345.	1.4	38
21	Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique. Journal of the Mechanical Behavior of Materials, 2020, 29, 77-85.	0.7	36
22	Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. International Journal of Heat and Mass Transfer, 2014, 72, 440-451.	2.5	35
23	Thermal performance of phase change material–based heat sink for passive cooling of electronic components: An experimental study. International Journal of Energy Research, 2021, 45, 5939-5963.	2.2	32
24	Shear Lag Model for Regularly Staggered Short Fuzzy Fiber Reinforced Composite. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	28
25	Strain and defect engineering of graphene for hydrogen storage via atomistic modelling. International Journal of Hydrogen Energy, 2021, 46, 22599-22610.	3.8	28
26	Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes. Journal of Mechanics of Materials and Structures, 2014, 9, 1-25.	0.4	27
27	A comparative study and optimization of phase change material based heat sinks for thermal management of electronic components. Journal of Energy Storage, 2021, 43, 103224.	3.9	27
28	Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mechanica, 2018, 229, 2787-2800.	1.1	26
29	Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mechanica, 2014, 225, 2621-2643.	1.1	25
30	Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices. International Journal of Energy Research, 2021, 45, 8666-8683.	2.2	24
31	Effective Thermal Conductivities of a Novel Fuzzy Fiber-Reinforced Composite Containing Wavy Carbon Nanotubes. Journal of Heat Transfer, 2015, 137, .	1.2	23
32	Comprehensive analysis of melting and solidification of a phase change material in an annulus. Heat and Mass Transfer, 2019, 55, 769-790.	1.2	22
33	Analysis of solidification in a finite PCM storage with internal fins by employing heat balance integral method. International Journal of Energy Research, 2019, 43, 6366-6388.	2.2	22
34	Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam. International Journal of Mechanics and Materials in Design, 2019, 15, 447-470.	1.7	21
35	Investigation of hydrogen adsorption behavior of graphene under varied conditions using a novel energy-centered method. Carbon Letters, 2021, 31, 655.	3.3	21
36	Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes. Acta Mechanica, 2020, 231, 4003-4018.	1.1	20

SHAILESH KUNDALWAL

#	Article	IF	CITATIONS
37	Modeling of thermomechanical properties of polymeric hybrid nanocomposites. Polymer Composites, 2018, 39, 4148-4164.	2.3	18
38	Effect of carbon doping on electromechanical response of boron nitride nanosheets. Nanotechnology, 2020, 31, 405710.	1.3	18
39	Transversely isotropic elastic properties of multi-walled boron nitride nanotubes under a thermal environment. Nanotechnology, 2020, 31, 395707.	1.3	17
40	Flexoelectric effect in boron nitride–graphene heterostructures. Acta Mechanica, 2021, 232, 3781-3800.	1.1	17
41	Flexoelectric and surface effects on the electromechanical behavior of graphene-based nanobeams. Applied Mathematical Modelling, 2020, 81, 70-91.	2.2	16
42	Thermoelastic Properties of a Novel Fuzzy Fiber-Reinforced Composite. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	15
43	Synergistic effect of surface-flexoelectricity on electromechanical response of BN-based nanobeam. International Journal of Mechanics and Materials in Design, 2022, 18, 3-19.	1.7	13
44	Adhesive and viscoelastic response of MWCNT/ZrO2 hybrid epoxy nanocomposites. Journal of Mechanics of Materials and Structures, 2021, 16, 281-292.	0.4	12
45	Selection of phaseâ€change material for thermal management of electronic devices using <scp>multiâ€attribute</scp> decisionâ€making technique. International Journal of Energy Research, 2021, 45, 2023-2042.	2.2	11
46	Enhancement of piezoelectric and flexoelectric response of boron nitride sheet superlattices via interface and defect engineering. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114563.	1.3	11
47	Smart damping of a simply supported laminated CNT-based hybrid composite plate using FE approach. Thin-Walled Structures, 2022, 171, 108782.	2.7	11
48	Interfacial characteristics of hybrid nanocomposite under thermomechanical loading. Journal of the Mechanical Behavior of Materials, 2017, 26, 95-103.	0.7	10
49	Electromechanical response of thin shell laminated with flexoelectric composite layer. Thin-Walled Structures, 2020, 157, 107138.	2.7	10
50	Effect of Carbon Nanotube Waviness on the Load Transfer Characteristics of Short Fuzzy Fiber-Reinforced Composite. Journal of Nanomechanics & Micromechanics, 2014, 4, .	1.4	9
51	Synergistic effect of ultrasonically assisted exfoliated MWCNTs by ZrO ₂ nanoparticles on thermo-mechanical and anti-corrosive properties of epoxy nanocomposites. Journal of Composite Materials, 2022, 56, 1633-1649.	1.2	9
52	Adsorption and desorption behavior of titanium-decorated polycrystalline graphene toward hydrogen storage: a molecular dynamics study. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	9
53	Evaluation of effective properties for smart graphene reinforced nanocomposite materials. Materials Today: Proceedings, 2020, 23, 523-527.	0.9	8
54	Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: Analytical and finite element study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 2185-2206.	0.7	6

SHAILESH KUNDALWAL

#	Article	IF	CITATIONS
55	Polarization in graphene nanoribbons with inherent defects using first-principles calculations. Acta Mechanica, 2022, 233, 399-411.	1.1	5
56	Effect of orientation of CNTs and piezoelectric fibers on the damping performance of multiscale composite plate. Journal of Intelligent Material Systems and Structures, 2023, 34, 194-216.	1.4	5
57	Transversely Isotropic Elastic Properties of Vacancy Defected Boron Nitride Nanotubes Using Molecular Dynamics Simulations. , 2018, , .		3
58	Experimental Investigation of Thermal Performance of Nano-Enhanced Phase Change Materials for Thermal Management of Electronic Components. , 2019, , .		3
59	Micromechanical analysis of effective mechanical properties of graphene/ZrO ₂ -hybrid poly (methyl methacrylate) nanocomposites. Journal of Micromanufacturing, 2023, 6, 5-11.	0.6	2
60	Experimental investigation on paraffin wax-based heat sinks with cross plate fin arrangement for cooling of electronic components. Journal of Thermal Analysis and Calorimetry, 2022, 147, 9487-9504.	2.0	2
61	Role of grain boundaries on the thermal properties of carbon nanotubes. Materials Today: Proceedings, 2020, 23, 622-625.	0.9	Ο