
## Sanjay M Jachak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11369510/publications.pdf Version: 2024-02-01



SANIAV M JACHAK

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ethnopharmacology and Phytochemistry of Selected Species of Boerhavia Occurring in India: A<br>Review. Current Traditional Medicine, 2022, 08, .                                                                       | 0.4 | 0         |
| 2  | Design, Synthesis, Molecular Modelling, and Biological Evaluation of Oleanolic Acid-Arylidene<br>Derivatives as Potential Anti-Inflammatory Agents. Drug Design, Development and Therapy, 2021,<br>Volume 15, 385-397. | 4.3 | 11        |
| 3  | Natural Anti-inflammatory Compounds as Drug Candidates in Alzheimer's Disease. Current Medicinal<br>Chemistry, 2021, 28, 4799-4825.                                                                                    | 2.4 | 35        |
| 4  | Origanum vulgare L.: In vitro Assessment of Cytotoxicity, Molecular Docking Studies, Antioxidant and<br>Anti-inflammatory Activity in LPS Stimulated RAW 264.7 Cells. Medicinal Chemistry, 2021, 17, 983-993.          | 1.5 | 14        |
| 5  | Synthesis, biological evaluation and computational studies of acrylohydrazide derivatives as<br>potential Staphylococcus aureus NorA efflux pump inhibitors. Bioorganic Chemistry, 2020, 104, 104225.                  | 4.1 | 4         |
| 6  | Pyrazole–coumarin and pyrazole–quinoline chalcones as potential antitubercular agents. Archiv Der<br>Pharmazie, 2020, 353, e2000077.                                                                                   | 4.1 | 36        |
| 7  | MsrA Efflux Pump Inhibitory Activity of <i>Piper cubeba</i> L.f. and its Phytoconstituents against<br><i>Staphylococcus aureus</i> RN4220. Chemistry and Biodiversity, 2020, 17, e2000144.                             | 2.1 | 8         |
| 8  | Pseudomonas koreensis Recovered From Raw Yak Milk Synthesizes a β-Carboline Derivative With<br>Antimicrobial Properties. Frontiers in Microbiology, 2019, 10, 1728.                                                    | 3.5 | 13        |
| 9  | Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular<br>agents. European Journal of Medicinal Chemistry, 2018, 157, 1-13.                                                | 5.5 | 13        |
| 10 | Synthesis of carbohydrazides and carboxamides as anti-tubercular agents. European Journal of<br>Medicinal Chemistry, 2018, 156, 871-884.                                                                               | 5.5 | 14        |
| 11 | Antioxidant and antiproliferative activity of indigocarpan, a pterocarpan from <i>Indigofera aspalathoides</i> . Journal of Pharmacy and Pharmacology, 2016, 68, 1331-1339.                                            | 2.4 | 10        |
| 12 | Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against<br>methicillin-resistant Staphylococcus aureus. Biologia (Poland), 2016, 71, 484-493.                                            | 1.5 | 27        |
| 13 | Chemistry and biology of microsomal prostaglandin E <sub>2</sub> synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status. RSC Advances, 2016, 6, 28343-28369.        | 3.6 | 15        |
| 14 | Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Advances, 2015, 5, 38892-38905.                                                                                                           | 3.6 | 155       |
| 15 | 2′-Hydroxy flavanone derivatives as an inhibitors of pro-inflammatory mediators: Experimental and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1952-1955.                          | 2.2 | 14        |
| 16 | 2,5-Diaryl-1,3,4-oxadiazoles as selective COX-2 inhibitors and anti-inflammatory agents. RSC Advances, 2015, 5, 45535-45544.                                                                                           | 3.6 | 26        |
| 17 | Phytochemical, Therapeutic, and Ethnopharmacological Overview for a Traditionally Important<br>Herb: <i>Boerhavia diffusa</i> Linn BioMed Research International, 2014, 2014, 1-19.                                    | 1.9 | 104       |
| 18 | 2-Acetoxyverecynarmin C, a New Briarane COX Inhibitory Diterpenoid from <i>Pennatula aculeata</i> .<br>Natural Product Communications, 2014, 9, 1934578X1400900.                                                       | 0.5 | 4         |

| #  | Article                                                                                                                                                                                                                                                        | IF                | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 19 | Synthesis, biological evaluation, molecular docking and theoretical evaluation of ADMET properties of nepodin and chrysophanol derivatives as potential cyclooxygenase (COX-1, COX-2) inhibitors.<br>European Journal of Medicinal Chemistry, 2014, 80, 47-56. | 5.5               | 44             |
| 20 | Pyrazolylbenzyltriazoles as cyclooxygenase inhibitors: synthesis and biological evaluation as dual anti-inflammatory and antimicrobial agents. New Journal of Chemistry, 2014, 38, 3662.                                                                       | 2.8               | 24             |
| 21 | Recent developments in chemistry and biology of curcumin analogues. RSC Advances, 2014, 4, 13946.                                                                                                                                                              | 3.6               | 90             |
| 22 | Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno[4,3- c ]pyrazol-4(1) Tj ETQq<br>2014, 24, 4638-4642.                                                                                                                        | 0 0 0 rgBT<br>2.2 | Overlock 10 20 |
| 23 | Rotenoids from <i>Boerhaavia diffusa</i> as Potential Anti-inflammatory Agents. Journal of Natural<br>Products, 2013, 76, 1393-1398.                                                                                                                           | 3.0               | 42             |
| 24 | Synthesis of novel celecoxib analogues by bioisosteric replacement of sulfonamide as potent<br>anti-inflammatory agents and cyclooxygenase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21,<br>4581-4590.                                             | 3.0               | 61             |
| 25 | NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fìtoterapìâ, 2013, 90, 140-150.                                                                                                                                                           | 2.2               | 79             |
| 26 | 7-Hydroxy-(E)-3-phenylmethylene-chroman-4-one analogues as efflux pump inhibitors against<br>Mycobacterium smegmatis mc2 155. European Journal of Medicinal Chemistry, 2013, 66, 499-507.                                                                      | 5.5               | 29             |
| 27 | Analysis of Flavonoids and Iridoids in <i>Vitex Negundo</i> by HPLC-PDA and Method Validation.<br>Natural Product Communications, 2013, 8, 1934578X1300800.                                                                                                    | 0.5               | 4              |
| 28 | Antiarthritic effects of Ajuga bracteosa Wall ex Benth. in acute and chronic models of arthritis in albino rats. Asian Pacific Journal of Tropical Biomedicine, 2012, 2, 185-188.                                                                              | 1.2               | 45             |
| 29 | Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155.<br>Fìtoterapìâ, 2012, 83, 1248-1255.                                                                                                                         | 2.2               | 34             |
| 30 | Analysis of Homoisoflavonoids in <i>Caesalpinia digyna</i> by HPLC-ESI-MS, HPLC and Method<br>Validation. Natural Product Communications, 2012, 7, 1934578X1200700.                                                                                            | 0.5               | 3              |
| 31 | Analysis of homoisoflavonoids in Caesalpinia digyna by HPLC-ESI-MS, HPLC and method validation.<br>Natural Product Communications, 2012, 7, 1189-92.                                                                                                           | 0.5               | 7              |
| 32 | Anti-inflammatory effect of Ajuga bracteosa Wall Ex Benth. mediated through cyclooxygenase (COX)<br>inhibition. Journal of Ethnopharmacology, 2011, 133, 928-930.                                                                                              | 4.1               | 70             |
| 33 | Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of<br>Tridax procumbens L. FA¬toterapA¬A¢, 2011, 82, 173-177.                                                                                                 | 2.2               | 59             |
| 34 | Simultaneous determination of naphthalene and anthraquinone derivatives in <i>Rumex nepalensis</i><br>Spreng. Roots by HPLC: comparison of different extraction methods and validation. Phytochemical<br>Analysis, 2011, 22, 153-157.                          | 2.4               | 30             |
| 35 | Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as<br>cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents. Bioorganic and Medicinal<br>Chemistry Letters, 2011, 21, 1612-1616.                       | 2.2               | 60             |
| 36 | A novel synthetic approach towards pyrazole-4-carboxamides using<br>N-(3-(dimethylamino)-2-formylacryloyl)formamide. Monatshefte FÁ¼r Chemie, 2010, 141, 569-576.                                                                                              | 1.8               | 1              |

**SANJAY M JACHAK** 

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory and antioxidant effects of Dysophylla<br>stellata Benth FA¬toterapA¬A¢, 2010, 81, 45-49.                                                                                               | 2.2  | 36        |
| 38 | Synthesis and biological evaluation of arylidene analogues of Meldrum's acid as a new class of antimalarial and antioxidant agents. Bioorganic and Medicinal Chemistry, 2010, 18, 5626-5633.                                                       | 3.0  | 37        |
| 39 | Determination of Chromones in Dysophylla stellata by HPLC: Method Development, Validation and<br>Comparison of Different Extraction Methods. Natural Product Communications, 2010, 5,<br>1934578X1000500.                                          | 0.5  | 2         |
| 40 | Anti-inflammatory, Cyclooxygenase (COX)-2, COX-1 Inhibitory, and Free Radical Scavenging Effects<br>of <i>Rumex nepalensis</i> . Planta Medica, 2010, 76, 1564-1569.                                                                               | 1.3  | 52        |
| 41 | Determination of chromones in Dysophylla stellata by HPLC: method development, validation and comparison of different extraction methods. Natural Product Communications, 2010, 5, 555-8.                                                          | 0.5  | 3         |
| 42 | Recent developments in antiâ€inflammatory natural products. Medicinal Research Reviews, 2009, 29,<br>767-820.                                                                                                                                      | 10.5 | 375       |
| 43 | Indian medicinal plants as a source of antimycobacterial agents. Journal of Ethnopharmacology, 2007, 110, 200-234.                                                                                                                                 | 4.1  | 227       |
| 44 | PGE synthase inhibitors as an alternative to COX-2 inhibitors. Current Opinion in Investigational Drugs, 2007, 8, 411-5.                                                                                                                           | 2.3  | 12        |
| 45 | Cyclooxygenase Inhibitory Natural Products: Current Status. Current Medicinal Chemistry, 2006, 13, 659-678.                                                                                                                                        | 2.4  | 79        |
| 46 | Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1793-1797.                      | 2.2  | 273       |
| 47 | Design, Synthesis, Biological Evaluation and Molecular Docking of Curcumin Analogues as<br>Antioxidant, Cyclooxygenase Inhibitory and Antiinflammatory Agents ChemInform, 2005, 36, no.                                                            | 0.0  | 1         |
| 48 | Synthesis and evaluation of S -4-(3-thienyl)phenyl-α-methylacetic acid. Bioorganic and Medicinal<br>Chemistry Letters, 2004, 14, 979-982.                                                                                                          | 2.2  | 9         |
| 49 | Cyclooxygenase inhibitory flavonoids from the stem bark ofSemecarpus anacardium Linn<br>Phytotherapy Research, 2004, 18, 582-584.                                                                                                                  | 5.8  | 40        |
| 50 | Synthesis and Evaluation of S-4-(3-Thienyl)phenyl-α-methylacetic Acid ChemInform, 2004, 35, no.                                                                                                                                                    | 0.0  | 0         |
| 51 | A new cyclooxygenase (COX) inhibitory pterocarpan from Indigofera aspalathoides: structure elucidation and determination of binding orientations in the active sites of the enzyme by molecular docking. Tetrahedron Letters, 2004, 45, 4311-4314. | 1.4  | 34        |
| 52 | A cyclooxygenase (COX) inhibitory biflavonoid from the seeds of Semecarpus anacardium. Journal of Ethnopharmacology, 2004, 95, 209-212.                                                                                                            | 4.1  | 69        |