
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11368648/publications.pdf Version: 2024-02-01

AZDA H LICON

#	Article	IF	CITATIONS
1	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	13.7	3,331
2	PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma. New England Journal of Medicine, 2015, 372, 311-319.	13.9	3,099
3	Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genetics, 1997, 15, 356-362.	9.4	2,596
4	Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 2011, 43, 869-874.	9.4	945
5	Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. Journal of Clinical Oncology, 2016, 34, 2698-2704.	0.8	868
6	Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncology, The, 2016, 17, 1283-1294.	5.1	818
7	<i>PD-L1</i> and <i>PD-L2</i> Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. Journal of Clinical Oncology, 2016, 34, 2690-2697.	0.8	634
8	CDK8 is a colorectal cancer oncogene that regulates \hat{I}^2 -catenin activity. Nature, 2008, 455, 547-551.	13.7	594
9	Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood, 2016, 127, 869-881.	0.6	429
10	Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 2014, 46, 462-466.	9.4	381
11	Mechanisms and therapeutic implications of hypermutation in gliomas. Nature, 2020, 580, 517-523.	13.7	374
12	Clinical Activity of mTOR Inhibition With Sirolimus in Malignant Perivascular Epithelioid Cell Tumors: Targeting the Pathogenic Activation of mTORC1 in Tumors. Journal of Clinical Oncology, 2010, 28, 835-840.	0.8	362
13	Validation of OncoPanel: A Targeted Next-Generation Sequencing Assay for the Detection of Somatic Variants in Cancer. Archives of Pathology and Laboratory Medicine, 2017, 141, 751-758.	1.2	350
14	Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1, e87062.	2.3	340
15	Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncology, The, 2019, 20, 1011-1022.	5.1	315
16	Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 942-950.	0.8	273
17	BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications. PLoS ONE, 2011, 6, e17948.	1.1	268
18	Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. Journal of Clinical Oncology, 2019, 37, 481-489.	0.8	265

#	Article	IF	CITATIONS
19	<i>EGFR</i> Variant Heterogeneity in Glioblastoma Resolved through Single-Nucleus Sequencing. Cancer Discovery, 2014, 4, 956-971.	7.7	251
20	Oncogenic PI3K mutations are as common as <i>AKT1</i> and <i>SMO</i> mutations in meningioma. Neuro-Oncology, 2016, 18, 649-655.	0.6	221
21	MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nature Genetics, 2016, 48, 273-282.	9.4	214
22	Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. Journal of Clinical Oncology, 2019, 37, 3291-3299.	0.8	195
23	Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor <i>MYBL1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8188-8193.	3.3	188
24	Nivolumab for Newly Diagnosed Advanced-Stage Classic Hodgkin Lymphoma: Safety and Efficacy in the Phase II CheckMate 205 Study. Journal of Clinical Oncology, 2019, 37, 1997-2007.	0.8	170
25	Classical Hodgkin Lymphoma with Reduced β2M/MHC Class I Expression Is Associated with Inferior Outcome Independent of 9p24.1 Status. Cancer Immunology Research, 2016, 4, 910-916.	1.6	146
26	Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology, 2014, 16, 567-578.	0.6	140
27	A Novel SS18-SSX Fusion-specific Antibody for the Diagnosis of Synovial Sarcoma. American Journal of Surgical Pathology, 2020, 44, 922-933.	2.1	131
28	Genetic Basis for PD-L1 Expression in Squamous Cell Carcinomas of the Cervix and Vulva. JAMA Oncology, 2016, 2, 518.	3.4	121
29	Constitutional Rearrangement of the Architectural Factor HMGA2: A Novel Human Phenotype Including Overgrowth and Lipomas. American Journal of Human Genetics, 2005, 76, 340-348.	2.6	116
30	Genetics of uterine leiomyomata. Genes Chromosomes and Cancer, 2000, 28, 235-245.	1.5	111
31	Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 2016, 22, 723-726.	15.2	105
32	Buparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial. Journal of Clinical Oncology, 2019, 37, 741-750.	0.8	103
33	NFIA Haploinsufficiency Is Associated with a CNS Malformation Syndrome and Urinary Tract Defects. PLoS Genetics, 2007, 3, e80.	1.5	100
34	Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology, 2017, 19, now235.	0.6	99
35	Characterization of Apparently Balanced Chromosomal Rearrangements from the Developmental Genome Anatomy Project. American Journal of Human Genetics, 2008, 82, 712-722.	2.6	95
36	Landscape of Genomic Alterations in Pituitary Adenomas. Clinical Cancer Research, 2017, 23, 1841-1851.	3.2	94

#	Article	IF	CITATIONS
37	Preliminary Results of a Phase I Study of Nivolumab (BMS-936558) in Patients with Relapsed or Refractory Lymphoid Malignancies. Blood, 2014, 124, 291-291.	0.6	92
38	Preclinical Efficacy of the MDM2 Inhibitor RG7112 in <i>MDM2</i> -Amplified and <i>TP53</i> Wild-type Glioblastomas. Clinical Cancer Research, 2016, 22, 1185-1196.	3.2	89
39	Polysomy for Chromosomes 1 and 19 Predicts Earlier Recurrence in Anaplastic Oligodendrogliomas with Concurrent 1p/19q Loss. Clinical Cancer Research, 2009, 15, 6430-6437.	3.2	88
40	Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathologica Communications, 2020, 8, 107.	2.4	84
41	A molecularly integrated grade for meningioma. Neuro-Oncology, 2022, 24, 796-808.	0.6	83
42	Detection of KIAA1549-BRAF Fusion Transcripts in Formalin-Fixed Paraffin-Embedded Pediatric Low-Grade Gliomas. Journal of Molecular Diagnostics, 2011, 13, 669-677.	1.2	81
43	ARID1A and TERT promoter mutations in dedifferentiated meningioma. Cancer Genetics, 2015, 208, 345-350.	0.2	73
44	A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro-Oncology, 2021, 23, 1777-1788.	0.6	68
45	ORC5L, a New Member of the Human Origin Recognition Complex, Is Deleted in Uterine Leiomyomas and Malignant Myeloid Diseases. Journal of Biological Chemistry, 1998, 273, 27137-27145.	1.6	67
46	Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget, 2014, 5, 10596-10606.	0.8	65
47	A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro-Oncology, 2016, 18, 269-274.	0.6	64
48	Integrative Analysis of 1q23.3 Copy-Number Gain in Metastatic Urothelial Carcinoma. Clinical Cancer Research, 2014, 20, 1873-1883.	3.2	63
49	Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors. American Journal of Pathology, 2010, 176, 1901-1913.	1.9	59
50	<i>BRAF</i> Duplications and MAPK Pathway Activation Are Frequent in Gliomas of the Optic Nerve Proper. Journal of Neuropathology and Experimental Neurology, 2012, 71, 789-795.	0.9	59
51	Overexpression of Elafin in Ovarian Carcinoma Is Driven by Genomic Gains and Activation of the Nuclear Factor κB Pathway and Is Associated with Poor Overall Survival. Neoplasia, 2010, 12, 161-IN15.	2.3	56
52	Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas. Oncotarget, 2014, 5, 8083-8092.	0.8	55
53	Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-Oncology, 2017, 19, now294.	0.6	54
54	Expression of HMGIY in Three Uterine Leiomyomata with Complex Rearrangements of Chromosome 6. Cancer Genetics and Cytogenetics, 1999, 114, 9-16.	1.0	48

#	Article	IF	CITATIONS
55	Simultaneous, Multilocus FISH Analysis for Detection of Microdeletions in the Diagnostic Evaluation of Developmental Delay and Mental Retardation. American Journal of Human Genetics, 1997, 61, 51-59.	2.6	41
56	Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. Neuro-Oncology, 2015, 17, 1344-1355.	0.6	40
57	Disruption of Diacylglycerol Kinase Delta (DGKD) Associated with Seizures in Humans and Mice. American Journal of Human Genetics, 2007, 80, 792-799.	2.6	39
58	Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro-Oncology, 2015, 17, 1486-1496.	0.6	39
59	Detection of ERBB2 Amplification by Next-Generation Sequencing Predicts HER2 Expression in Colorectal Carcinoma. American Journal of Clinical Pathology, 2019, 152, 97-108.	0.4	36
60	Spatial signatures identify immune escape via PD-1 as a defining feature of T-cell/histiocyte-rich large B-cell lymphoma. Blood, 2021, 137, 1353-1364.	0.6	31
61	Dysregulation ofHMGIC in a uterine lipoleiomyoma with a complex rearrangement including chromosomes 7, 12, and 14. , 2000, 27, 209-215.		28
62	DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues. PLoS ONE, 2012, 7, e38881.	1.1	28
63	Gene for multiple exostoses (EXT2) maps to 11(p11.2p12) and is deleted in patients with a contiguous gene syndrome. , 1998, 75, 538-540.		26
64	Identification of female carriers for Duchenne and Becker muscular dystrophies using a FISH-based approach. European Journal of Human Genetics, 2000, 8, 293-298.	1.4	24
65	Leveraging molecular datasets for biomarker-based clinical trial design in glioblastoma. Neuro-Oncology, 2017, 19, 908-917.	0.6	23
66	Molecular Characterization and Therapeutic Targeting of Colorectal Cancers Harboring Receptor Tyrosine Kinase Fusions. Clinical Cancer Research, 2021, 27, 1695-1705.	3.2	19
67	PCOLCE deletion and expression analyses in uterine leiomyomata. Cancer Genetics and Cytogenetics, 2002, 137, 133-137.	1.0	18
68	Candidate loci for Zimmermann–Laband syndrome at 3p14.3. American Journal of Medical Genetics, Part A, 2007, 143A, 107-111.	0.7	17
69	Genomic characterization of recurrent high-grade astroblastoma. Cancer Genetics, 2016, 209, 321-330.	0.2	17
70	Detection of ERBB2 amplification in uterine serous carcinoma by next-generation sequencing: an approach highly concordant with standard assays. Modern Pathology, 2021, 34, 603-612.	2.9	15
71	Disruption of a synaptotagmin (SYT14) associated with neurodevelopmental abnormalities. American Journal of Medical Genetics, Part A, 2007, 143A, 558-563.	0.7	14
72	Integrated Genomic Characterization of a Pineal Parenchymal Tumor of Intermediate Differentiation. World Neurosurgery, 2016, 85, 96-105.	0.7	14

#	Article	IF	CITATIONS
73	Pembrolizumab in Patients with Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma (PMBCL): Data from the Keynote-013 and Keynote-170 Studies. Blood, 2018, 132, 228-228.	0.6	14
74	A phase II prospective study of selumetinib in children with recurrent or refractory low-grade glioma (LGG): A Pediatric Brain Tumor Consortium (PBTC) study Journal of Clinical Oncology, 2017, 35, 10504-10504.	0.8	11
75	Case Report: Next generation sequencing identifies a NAB2-STAT6 fusion in Glioblastoma. Diagnostic Pathology, 2016, 11, 13.	0.9	10
76	Characterization of molecular signatures of supratentorial ependymomas. Modern Pathology, 2020, 33, 47-56.	2.9	10
77	Nivolumab in Patients with Relapsed or Refractory Hodgkin Lymphoma - Preliminary Safety, Efficacy and Biomarker Results of a Phase I Study. Blood, 2014, 124, 289-289.	0.6	10
78	Optic Nerve Glioma. Ophthalmic Plastic and Reconstructive Surgery, 2014, 30, 372-376.	0.4	8
79	Suppression of transformed phenotype and tumorigenicity after transfer of chromosome 4 into U251 human glioma cells. Genes Chromosomes and Cancer, 1997, 20, 260-267.	1.5	6
80	Chromosome 9p24.1/PD-L1/PD-L2Alterations and PD-L1 Expression and Treatment Outcomes in Patients with Classical Hodgkin Lymphoma Treated with Nivolumab (PD-1 Blockade). Blood, 2016, 128, 2923-2923.	0.6	5
81	Corrigendum to: LTBK-01. Updates On The Phase Ii And Re-treatment Study Of AZD6244 (Selumetinib) For Children With Recurrent Or Refractory Pediatric Low Grade Glioma: A Pediatric Brain Tumor Consortium (PBTC) Study. Neuro-Oncology, 2022, 24, 1404-1404.	0.6	5
82	Differentially expressed gene products in glioblastoma cells suppressed for tumorigenicity. Journal of NeuroVirology, 1998, 4, 217-226.	1.0	4
83	LTBK-01. UPDATES ON THE PHASE II AND RE-TREATMENT STUDY OF AZD6244 (SELUMETINIB) FOR CHILDREN WITH RECURRENT OR REFRACTORY PEDIATRIC LOW GRADE GLIOMA: A PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) STUDY. Neuro-Oncology, 2018, 20, i214-i214.	0.6	4
84	PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. Blood, 2015, 126, 176-176.	0.6	4
85	Complex cytogenetic rearrangements at the DURS 1 locus in syndromic Duane retraction syndrome. Clinical Case Reports (discontinued), 2013, 1, 30-37.	0.2	3
86	LGG-02. A PHASE II PROSPECTIVE TRIAL OF SELUMETINIB IN CHILDREN WITH RECURRENT/PROGRESSIVE PEDIATRIC LOW-GRADE GLIOMA (PLGG) WITH A FOCUS UPON OPTIC PATHWAY/HYPOTHALAMIC TUMORS AND VISUAL ACUITY OUTCOMES: A PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) STUDY, PBTC-029B. Neuro-Oncology, 2019, 21, ii98-ii99.	0.6	3
87	Copy number assessment in the genomic analysis of CNS neoplasia: An evidence-based review from the cancer genomics consortium (CGC) working group on primary CNS tumors. Cancer Genetics, 2020, 243, 19-47.	0.2	3
88	LGG-06. Selumetinib in pediatric patients with non-neurofibromatosis type 1-associated, non-optic pathway (OPG) and non-pilocytic recurrent/progressive low-grade glioma harboring BRAFV600E mutation or BRAF-KIAA1549 fusion: a multicenter prospective Pediatric Brain Tumor Consortium (PBTC) Phase 2 trial. Neuro-Oncology, 2022, 24, i88-i88.	0.6	3
89	From Prognostication to Personalized Medicine: Classification of Tumors of the Central Nervous System (CNS) Using Chromosomal Microarrays. Current Genetic Medicine Reports, 2017, 5, 117-124.	1.9	2
90	Integrated Genetic and Topological Analysis Reveals a Hodgkin-like Mechanism of Immune Escape in T-Cell/Histiocyte-Rich Large B-Cell Lymphoma. Blood, 2018, 132, 1579-1579.	0.6	2

#	Article	IF	CITATIONS
91	Clinical Importance of CDKN2A Loss and Monosomy 10 in Pilocytic Astrocytoma. Cureus, 2019, 11, e4726.	0.2	2
92	Genetics of uterine leiomyomata. , 2000, 28, 235.		1
93	The relationship between performance on the medical genetics and genomics in-training and certifying examinations. Genetics in Medicine, 2022, 24, 225-231.	1.1	1
94	Reporting of Diagnostic Cytogenetic Results. Current Protocols in Human Genetics, 2004, 43, Appendix 1D.	3.5	0
95	Reporting of Diagnostic Cytogenetic Results. Current Protocols in Human Genetics, 2010, 67, 1D.1-23.	3.5	0
96	Reporting of Diagnostic Cytogenetic Results. Current Protocols in Human Genetics, 2011, 70, 1D.	3.5	0
97	Molecular and Clinical Characterization of Radiation-Induced Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, .	0.4	0