Paola Ciceri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11368166/publications.pdf

Version: 2024-02-01

471509 377865 1,224 47 17 34 citations h-index g-index papers 48 48 48 1536 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cardiovascular disease in dialysis patients. Nephrology Dialysis Transplantation, 2018, 33, iii28-iii34.	0.7	320
2	The Key Role of Phosphate on Vascular Calcification. Toxins, 2019, 11, 213.	3.4	99
3	Production of leukotrienes in a model of focal cerebral ischaemia in the rat. British Journal of Pharmacology, 2001, 133, 1323-1329.	5.4	98
4	Osteoporosis, bone mineral density and CKD–MBD: treatment considerations. Journal of Nephrology, 2017, 30, 677-687.	2.0	56
5	Vitamin K in Chronic Kidney Disease. Nutrients, 2019, 11, 168.	4.1	54
6	The Cardiovascular Burden in End-Stage Renal Disease. Contributions To Nephrology, 2017, 191, 44-57.	1.1	51
7	Iron citrate reduces high phosphate-induced vascular calcification by inhibiting apoptosis. Atherosclerosis, 2016, 254, 93-101.	0.8	48
8	Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation. Nephrology Dialysis Transplantation, 2012, 27, 122-127.	0.7	46
9	Effects of a medium cut-off (Theranova \hat{A}^{\otimes}) dialyser on haemodialysis patients: a prospective, cross-over study. CKJ: Clinical Kidney Journal, 2021, 14, 382-389.	2.9	38
10	Pathophysiology of Calcium and Phosphate Metabolism Impairment in Chronic Kidney Disease. Blood Purification, 2009, 27, 338-344.	1.8	37
11	The Role of Vitamin K in Vascular Calcification. Advances in Chronic Kidney Disease, 2019, 26, 437-444.	1.4	33
12	Osteonectin (SPARC) Expression in Vascular Calcification: In Vitro and Ex Vivo Studies. Calcified Tissue International, 2016, 99, 472-480.	3.1	27
13	COVID-19 pandemic era: is it time to promote home dialysis and peritoneal dialysis?. CKJ: Clinical Kidney Journal, 2021, 14, i6-i13.	2.9	25
14	A new in vitro model to delay high phosphate-induced vascular calcification progression. Molecular and Cellular Biochemistry, 2015, 410, 197-206.	3.1	23
15	High-phosphate induced vascular calcification is reduced by iron citrate through inhibition of extracellular matrix osteo-chondrogenic shift in VSMCs. International Journal of Cardiology, 2019, 297, 94-103.	1.7	23
16	Therapeutic Effect of Iron Citrate in Blocking Calcium Deposition in High Pi-Calcified VSMC: Role of Autophagy and Apoptosis. International Journal of Molecular Sciences, 2019, 20, 5925.	4.1	22
17	The combination of lanthanum chloride and the calcimimetic calindol delays the progression of vascular smooth muscle cells calcification. Biochemical and Biophysical Research Communications, 2012, 418, 770-773.	2.1	18
18	Lanthanum Prevents High Phosphate-Induced Vascular Calcification by Preserving Vascular Smooth Muscle Lineage Markers. Calcified Tissue International, 2013, 92, 521-530.	3.1	16

#	Article	lF	Citations
19	Nutritional vitamin D in CKD: Should we measure? Should we treat?. Clinica Chimica Acta, 2020, 501, 186-197.	1.1	16
20	Calcifediol to treat secondary hyperparathyroidism in patients with chronic kidney disease. Expert Review of Clinical Pharmacology, 2017, 10, 1073-1084.	3.1	14
21	COVID-19 in Chronic Kidney Disease: The Impact of Old and Novel Cardiovascular Risk Factors. Blood Purification, 2021, 50, 740-749.	1.8	14
22	The Calcimimetic Calindol Prevents High Phosphate-Induced Vascular Calcification by Upregulating Matrix GLA Protein. Nephron Experimental Nephrology, 2013, 122, 75-82.	2.2	13
23	Hyperphosphatemia: a novel risk factor for mortality in chronic kidney disease. Annals of Translational Medicine, 2019, 7, 55-55.	1.7	13
24	Expanded Haemodialysis as a Current Strategy to Remove Uremic Toxins. Toxins, 2021, 13, 380.	3.4	13
25	Management of Secondary Hyperparathyroidism in Chronic Kidney Disease: A Focus on the Elderly. Drugs and Aging, 2019, 36, 885-895.	2.7	11
26	Current Therapy in CKD Patients Can Affect Vitamin K Status. Nutrients, 2020, 12, 1609.	4.1	11
27	Uremic Patients with Increased Vascular Calcification Score Have Serum with High Calcific Potential: Role of Vascular Smooth Muscle Cell Osteoblastic Differentiation and Apoptosis. Blood Purification, 2019, 48, 142-149.	1.8	10
28	The emerging role of iron in heart failure and vascular calcification in CKD. CKJ: Clinical Kidney Journal, 2021, 14, 739-745.	2.9	9
29	The role of activin: the other side of chronic kidney disease–mineral bone disorder?. Nephrology Dialysis Transplantation, 2021, 36, 966-974.	0.7	9
30	Cardiovascular calcifications in kidney transplant recipients. Nephrology Dialysis Transplantation, 2022, 37, 2063-2071.	0.7	9
31	Phosphate Control in Peritoneal Dialysis. Contributions To Nephrology, 2012, 178, 116-123.	1.1	8
32	Restoring the Physiology of Vitamin D Receptor Activation and the Concept of Selectivity. Contributions To Nephrology, 2011, 171, 151-156.	1.1	6
33	Secondary Hyperparathyroidism in End-Stage Renal Disease: No Longer a Matter for Surgeons?. Blood Purification, 2016, 42, 44-48.	1.8	6
34	Pro-calcifying analysis of uraemic serum from patients treated with medium cut-off membrane in a prospective, cross-over study. CKJ: Clinical Kidney Journal, 2021, 14, 1798-1807.	2.9	5
35	Ectopic Calcification in Uremia: Where Do We Stand?. Blood Purification, 2020, 49, 641-642.	1.8	4
36	Current treatment options for secondary hyperparathyroidism in patients with stage 3 to 4 chronic kidney disease and vitamin D deficiency. Expert Opinion on Drug Safety, 2021, 20, 1333-1349.	2.4	4

#	Article	IF	CITATIONS
37	A roadmap to parathyroidectomy for kidney transplant candidates. CKJ: Clinical Kidney Journal, 2022, 15, 1459-1474.	2.9	4
38	1,25-dihydroxyvitamin D as Predictor of Renal Worsening Function in Chronic Kidney Disease. Results From the PASCaL-1,25D Study. Frontiers in Medicine, 2022, 9, 840801.	2.6	4
39	Calciphylaxis after kidney transplantation: a rare but life-threatening disorder. CKJ: Clinical Kidney Journal, 2022, 15, 611-614.	2.9	2
40	The Role of Uremic Retention Solutes in the MIA Syndrome in Hemodialysis Subjects. Blood Purification, 2023, 52, 41-53.	1.8	2
41	Serum PTH levels in dialysis: better safe than sorry. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882097417.	3.2	1
42	Phosphate binders in dialysis: better satisfied than sorry. CKJ: Clinical Kidney Journal, 2021, 14, 1859-1860.	2.9	1
43	Do we need new phosphate binders in dialysis?. CKJ: Clinical Kidney Journal, 2021, 14, 474-475.	2.9	1
44	Vitamin D receptor activation and prevention of arterial aging., 2020,, 409-425.		0
45	P1392ANALYSIS OF CALCIFYING POTENTIAL OF UREMIC SERUM FROM HAEMODIALYSIS PATIENTS TREATED WITH A MEDIUM CUT-OFF (THERANOVA) DIALYSER: A PROSPECTIVE, CROSS-OVER STUDY. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	O
46	Transforming the frail and elderly patient into an Iron Man: how to attenuate arterial calcification and improve cardiovascular outcomes in chronic kidney disease. Journal of Nephrology, 2021, 34, 1049-1051.	2.0	0
47	An update on tenapanor to treat hyperphosphatemia. Drugs of Today, 2022, 58, 33-53.	1.1	O