Jicheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11367611/publications.pdf Version: 2024-02-01

LICHENC YU

#	Article	IF	CITATIONS
1	Microneedle-mediated therapy for cardiovascular diseases. Drug Delivery and Translational Research, 2022, 12, 472-483.	3.0	6
2	Microneedle-Mediated Vaccination: Innovation and Translation. Advanced Drug Delivery Reviews, 2021, 179, 113919.	6.6	76
3	Recent advances in transdermal sensors for glucose monitoring. Current Opinion in Biomedical Engineering, 2021, 20, 100326.	1.8	3
4	Smart oral insulin therapy. Matter, 2021, 4, 3790-3791.	5.0	4
5	Glucoseâ€Responsive Insulin and Delivery Systems: Innovation and Translation. Advanced Materials, 2020, 32, e1902004.	11.1	138
6	Colloidal crystal microneedle patch for glucose monitoring. Nano Today, 2020, 35, 100984.	6.2	68
7	Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29512-29517.	3.3	64
8	Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4, 499-506.	11.6	353
9	Glucose-Responsive Microneedle Patches for Diabetes Treatment. Journal of Diabetes Science and Technology, 2019, 13, 41-48.	1.3	67
10	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	4.7	104
11	Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10744-10748.	3.3	38
12	A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Biomaterials Science, 2019, 7, 4508-4513.	2.6	12
13	Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Research, 2019, 12, 1539-1545.	5.8	61
14	Advances in transdermal insulin delivery. Advanced Drug Delivery Reviews, 2019, 139, 51-70.	6.6	202
15	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	5.8	83
16	Bioresponsive Microneedles with a Sheath Structure for H ₂ O ₂ and pH Cascadeâ€Triggered Insulin Delivery. Small, 2018, 14, e1704181.	5.2	113
17	Nanomedicine for obesity treatment. Science China Life Sciences, 2018, 61, 373-379.	2.3	20
18	Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano, 2018, 12, 2466-2473.	7.3	207

JICHENG YU

#	Article	IF	CITATIONS
19	Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Reviews, 2018, 127, 106-118.	6.6	242
20	The potential of a microneedle patch for reducing obesity. Expert Opinion on Drug Delivery, 2018, 15, 431-433.	2.4	16
21	Advances in bioresponsive closed-loop drug delivery systems. International Journal of Pharmaceutics, 2018, 544, 350-357.	2.6	59
22	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
23	ROSâ€Responsive Microneedle Patch for Acne Vulgaris Treatment. Advanced Therapeutics, 2018, 1, 1800035.	1.6	69
24	Drug Delivery: Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation (Adv.) Tj ETQq	000rgB1	- /gverlock 10
25	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	7.2	124
26	Hypoxia and H ₂ O ₂ Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.	4.5	220
27	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	1.6	20
28	Innentitelbild: Anaerobeâ€Inspired Anticancer Nanovesicles (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2558-2558.	1.6	3
29	Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles. Methods in Molecular Biology, 2017, 1570, 251-259.	0.4	13
30	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	5.8	74
31	Red Blood Cells for Glucoseâ€Responsive Insulin Delivery. Advanced Materials, 2017, 29, 1606617.	11.1	126
32	Drug Delivery Devices: Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia (Small) Tj ETQq0 (0 0 ₅ .gBT /0	Overlock 10 T
33	Bioresponsive transcutaneous patches. Current Opinion in Biotechnology, 2017, 48, 28-32.	3.3	62
34	Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 2017, 13, 1603028.	5.2	36
35	H ₂ O ₂ -Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS Nano, 2017, 11, 613-620.	7.3	255

Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS Nano, 2017, 11, 9223-9230. 7.3 157

JICHENG YU

#	Article	IF	CITATIONS
37	Red Blood Cells for Drug Delivery. Small Methods, 2017, 1, 1700270.	4.6	62
38	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	11.1	90
39	Photoacoustic Drug Delivery. Sensors, 2017, 17, 1400.	2.1	33
40	ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging. Theranostics, 2016, 6, 1053-1064.	4.6	54
41	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	11.1	421
42	Drug Delivery: Microneedles Integrated with Pancreatic Cells and Synthetic Glucoseâ€Signal Amplifiers for Smart Insulin Delivery (Adv. Mater. 16/2016). Advanced Materials, 2016, 28, 3223-3223.	11.1	5
43	Versatile Protein Nanogels Prepared by In Situ Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 333-343.	1.1	26
44	Microneedles Integrated with Pancreatic Cells and Synthetic Glucose‣ignal Amplifiers for Smart Insulin Delivery. Advanced Materials, 2016, 28, 3115-3121.	11.1	193
45	Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale, 2016, 8, 9178-9184.	2.8	29
46	Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials, 2016, 96, 1-10.	5.7	46
47	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
48	Stimuliâ€responsive delivery of therapeutics for diabetes treatment. Bioengineering and Translational Medicine, 2016, 1, 323-337.	3.9	80
49	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3226-3226.	11.1	6
50	Elastic drug delivery: could treatments be triggered by patient movement?. Nanomedicine, 2016, 11, 323-325.	1.7	4
51	Hypoxia-Sensitive Materials for Biomedical Applications. Annals of Biomedical Engineering, 2016, 44, 1931-1945.	1.3	37
52	Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles. Cellular and Molecular Bioengineering, 2015, 8, 445-454.	1.0	27
53	Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8260-8265.	3.3	655
54	Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. ACS Nano, 2015, 9, 9407-9415.	7.3	196