Jicheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11367611/publications.pdf Version: 2024-02-01

LICHENC YU

#	Article	IF	CITATIONS
1	Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8260-8265.	3.3	655
2	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	11.1	421
3	Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4, 499-506.	11.6	353
4	H ₂ O ₂ -Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS Nano, 2017, 11, 613-620.	7.3	255
5	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
6	Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Reviews, 2018, 127, 106-118.	6.6	242
7	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
8	Hypoxia and H ₂ O ₂ Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.	4.5	220
9	Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano, 2018, 12, 2466-2473.	7.3	207
10	Advances in transdermal insulin delivery. Advanced Drug Delivery Reviews, 2019, 139, 51-70.	6.6	202
11	Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. ACS Nano, 2015, 9, 9407-9415.	7.3	196
12	Microneedles Integrated with Pancreatic Cells and Synthetic Glucoseâ€ S ignal Amplifiers for Smart Insulin Delivery. Advanced Materials, 2016, 28, 3115-3121.	11.1	193
13	Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS Nano, 2017, 11, 9223-9230.	7.3	157
14	Glucoseâ€Responsive Insulin and Delivery Systems: Innovation and Translation. Advanced Materials, 2020, 32, e1902004.	11.1	138
15	Red Blood Cells for Glucoseâ€Responsive Insulin Delivery. Advanced Materials, 2017, 29, 1606617.	11.1	126
16	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	7.2	124
17	Bioresponsive Microneedles with a Sheath Structure for H ₂ O ₂ and pH Cascadeâ€Triggered Insulin Delivery. Small, 2018, 14, e1704181.	5.2	113
18	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	4.7	104

JICHENG YU

#	Article	IF	CITATIONS
19	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	11.1	90
20	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	5.8	83
21	Stimuliâ€responsive delivery of therapeutics for diabetes treatment. Bioengineering and Translational Medicine, 2016, 1, 323-337.	3.9	80
22	Microneedle-Mediated Vaccination: Innovation and Translation. Advanced Drug Delivery Reviews, 2021, 179, 113919.	6.6	76
23	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	5.8	74
24	ROSâ€Responsive Microneedle Patch for Acne Vulgaris Treatment. Advanced Therapeutics, 2018, 1, 1800035.	1.6	69
25	Colloidal crystal microneedle patch for glucose monitoring. Nano Today, 2020, 35, 100984.	6.2	68
26	Glucose-Responsive Microneedle Patches for Diabetes Treatment. Journal of Diabetes Science and Technology, 2019, 13, 41-48.	1.3	67
27	Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29512-29517.	3.3	64
28	Bioresponsive transcutaneous patches. Current Opinion in Biotechnology, 2017, 48, 28-32.	3.3	62
29	Red Blood Cells for Drug Delivery. Small Methods, 2017, 1, 1700270.	4.6	62
30	Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Research, 2019, 12, 1539-1545.	5.8	61
31	Advances in bioresponsive closed-loop drug delivery systems. International Journal of Pharmaceutics, 2018, 544, 350-357.	2.6	59
32	ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging. Theranostics, 2016, 6, 1053-1064.	4.6	54
33	Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials, 2016, 96, 1-10.	5.7	46
34	Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10744-10748.	3.3	38
35	Hypoxia-Sensitive Materials for Biomedical Applications. Annals of Biomedical Engineering, 2016, 44, 1931-1945.	1.3	37
36	Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 2017, 13, 1603028.	5.2	36

JICHENG YU

#	Article	IF	CITATIONS
37	Photoacoustic Drug Delivery. Sensors, 2017, 17, 1400.	2.1	33
38	Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale, 2016, 8, 9178-9184.	2.8	29
39	Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles. Cellular and Molecular Bioengineering, 2015, 8, 445-454.	1.0	27
40	Versatile Protein Nanogels Prepared by In Situ Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 333-343.	1.1	26
41	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	1.6	20
42	Nanomedicine for obesity treatment. Science China Life Sciences, 2018, 61, 373-379.	2.3	20
43	The potential of a microneedle patch for reducing obesity. Expert Opinion on Drug Delivery, 2018, 15, 431-433.	2.4	16
44	Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles. Methods in Molecular Biology, 2017, 1570, 251-259.	0.4	13
45	A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Biomaterials Science, 2019, 7, 4508-4513.	2.6	12
46	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3226-3226.	11.1	6
47	Microneedle-mediated therapy for cardiovascular diseases. Drug Delivery and Translational Research, 2022, 12, 472-483.	3.0	6
48	Drug Delivery: Microneedles Integrated with Pancreatic Cells and Synthetic Glucose‣ignal Amplifiers for Smart Insulin Delivery (Adv. Mater. 16/2016). Advanced Materials, 2016, 28, 3223-3223.	11.1	5
49	Elastic drug delivery: could treatments be triggered by patient movement?. Nanomedicine, 2016, 11, 323-325.	1.7	4
50	Smart oral insulin therapy. Matter, 2021, 4, 3790-3791.	5.0	4
51	Drug Delivery: Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation (Adv.) Tj ETQq1	10,7843 11.1	1ჭ rgBT /Ov
52	Innentitelbild: Anaerobeâ€inspired Anticancer Nanovesicles (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2558-2558.	1.6	3
53	Recent advances in transdermal sensors for glucose monitoring. Current Opinion in Biomedical Engineering, 2021, 20, 100326.	1.8	3
54	Drug Delivery Devices: Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia (Small) Tj ETQq0 0	0_rgBT /Ov	verlock 10 T