List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11367016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Merging the senses into a robust percept. Trends in Cognitive Sciences, 2004, 8, 162-169.	4.0	1,482
2	Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 1994, 4, 604-610.	1.8	513
3	Orientation dependence in the recognition of familiar and novel views of three-dimensional objects. Vision Research, 1992, 32, 2385-2400.	0.7	436
4	Face recognition under varying poses: The role of texture and shape. Vision Research, 1996, 36, 1761-1771.	0.7	369
5	Image-based object recognition in man, monkey and machine. Cognition, 1998, 67, 1-20.	1.1	348
6	ls human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993) Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 1494-1505.	0.7	322
7	Integration of depth modules: stereo and shading. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1988, 5, 1749.	0.8	291
8	Viewpoint Dependence in Visual and Haptic Object Recognition. Psychological Science, 2001, 12, 37-42.	1.8	231
9	Effects of visual illusions on grasping Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 1124-1144.	0.7	217
10	Touch can change visual slant perception. Nature Neuroscience, 2000, 3, 69-73.	7.1	211
11	Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 2010, 10, 23-23.	0.1	198
12	Representation of the Perceived 3-D Object Shape in the Human Lateral Occipital Complex. Cerebral Cortex, 2003, 13, 911-920.	1.6	186
13	What Object Attributes Determine Canonical Views?. Perception, 1999, 28, 575-599.	0.5	182
14	The use of facial motion and facial form during the processing of identity. Vision Research, 2003, 43, 1921-1936.	0.7	154
15	Learning View Graphs for Robot Navigation. Autonomous Robots, 1998, 5, 111-125.	3.2	149
16	To What Extent Do Unique Parts Influence Recognition Across Changes in Viewpoint?. Psychological Science, 1997, 8, 282-289.	1.8	147
17	Stimulus-specific effects in face recognition over changes in viewpoint. Vision Research, 1998, 38, 2351-2363.	0.7	135
18	Sex Classification is Better with Three-Dimensional Head Structure Than with Image Intensity Information. Perception, 1997, 26, 75-84.	0.5	133

#	Article	IF	CITATIONS
19	The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions. PLoS ONE, 2012, 7, e32321.	1.1	132
20	Shape from texture: Ideal observers and human psychophysics. Vision Research, 1993, 33, 1723-1737.	0.7	109
21	Visual, haptic and crossmodal recognition of scenes. Experimental Brain Research, 2005, 161, 233-242.	0.7	99
22	How is bilateral symmetry of human faces used for recognition of novel views?. Vision Research, 1998, 38, 79-89.	0.7	80
23	A search advantage for faces learned in motion. Experimental Brain Research, 2006, 171, 436-447.	0.7	80
24	Why the visual recognition system might encode the effects of illumination. Vision Research, 1998, 38, 2259-2275.	0.7	76
25	Multisensory integration in the estimation of walked distances. Experimental Brain Research, 2012, 218, 551-565.	0.7	74
26	Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia, 2007, 45, 484-495.	0.7	69
27	On robots and flies: Modeling the visual orientation behavior of flies. Robotics and Autonomous Systems, 1999, 29, 227-242.	3.0	67
28	Categorical perception of familiar objects. Cognition, 2002, 85, 113-143.	1.1	63
29	Virtual arm׳s reach influences perceived distances but only after experience reaching. Neuropsychologia, 2015, 70, 393-401.	0.7	60
30	The Role of Stereo Vision in Visual–Vestibular Integration. Seeing and Perceiving, 2011, 24, 453-470.	0.4	49
31	Optimal visual–vestibular integration under conditions of conflicting intersensory motion profiles. Experimental Brain Research, 2015, 233, 587-597.	0.7	44
32	Simulating believable forward accelerations on a stewart motion platform. ACM Transactions on Applied Perception, 2010, 7, 1-27.	1.2	43
33	Causal Inference in the Perception of Verticality. Scientific Reports, 2018, 8, 5483.	1.6	42
34	Beyond Faces and Expertise. Psychological Science, 2016, 27, 213-222.	1.8	37
35	Causal Inference in Multisensory Heading Estimation. PLoS ONE, 2017, 12, e0169676.	1.1	36
36	Forced Fusion in Multisensory Heading Estimation. PLoS ONE, 2015, 10, e0127104.	1.1	34

3

#	Article	IF	CITATIONS
37	Walk this way: Approaching bodies can influence the processing of faces. Cognition, 2011, 118, 17-31.	1.1	30
38	Persistent perceptual delay for head movement onset relative to auditory stimuli of different durations and rise times. Experimental Brain Research, 2012, 220, 41-50.	0.7	29
39	View-Based Recognition of Faces in Man and Machine: Re-visiting Inter-extra-Ortho. Lecture Notes in Computer Science, 2002, , 651-660.	1.0	28
40	Serial exploration of faces: Comparing vision and touch. Journal of Vision, 2012, 12, 6-6.	0.1	27
41	The prototype effect revisited: Evidence for an abstract feature model of face recognition. Journal of Vision, 2008, 8, 20.	0.1	26
42	Is prior knowledge of object geometry used in visually guided reaching?. Journal of Vision, 2005, 5, 2-2.	0.1	25
43	Learning from humans: Computational modeling of face recognition. Network: Computation in Neural Systems, 2005, 16, 401-418.	2.2	21
44	View dependencies in the visual recognition of social interactions. Frontiers in Psychology, 2013, 4, 752.	1.1	21
45	The role of attention on the integration of visual and inertial cues. Experimental Brain Research, 2009, 198, 287-300.	0.7	19
46	Computational Modeling of Face Recognition Based on Psychophysical Experiments. Swiss Journal of Psychology, 2004, 63, 207-215.	0.9	17
47	Cross-Modal Transfer in Visual and Haptic Face Recognition. IEEE Transactions on Haptics, 2009, 2, 236-240.	1.8	16
48	Vision and Action in Virtual Environments: Modern Psychophysics in Spatial Cognition Research. , 2001, , 233-252.		15
49	Effects of parametric manipulation of inter-stimulus similarity on 3D object categorization. Spatial Vision, 1999, 12, 107-123.	1.4	13
50	Multidimensional scaling analysis of haptic exploratory procedures. ACM Transactions on Applied Perception, 2010, 7, 1-17.	1.2	13
51	Storing upright turns: how visual and vestibular cues interact during the encoding and recalling process. Experimental Brain Research, 2010, 200, 37-49.	0.7	12
52	Human discrimination of head-centred visual–inertial yaw rotations. Experimental Brain Research, 2015, 233, 3553-3564.	0.7	11
53	Using morphs of familiar objects to examine how shape discriminability influences view sensitivity. Perception & Psychophysics, 2008, 70, 853-877.	2.3	10
54	An Introduction to Object Recognition. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1998, 53, 610-621.	0.6	9

#	Article	IF	CITATIONS
55	Integration of Semi-Circular Canal and Otolith Cues for Direction Discrimination during Eccentric Rotations. PLoS ONE, 2015, 10, e0136925.	1.1	8
56	Comparing view sensitivity in shape discrimination with shape sensitivity in view discrimination. Perception & Psychophysics, 2006, 68, 655-673.	2.3	7
57	Multisensory Interactions in Head and Body Centered Perception of Verticality. Frontiers in Neuroscience, 2020, 14, 599226.	1.4	6
58	Egocentric biases in comparative volume judgments of rooms. Journal of Vision, 2016, 16, 2.	0.1	4
59	Gravity-dependent change in the â€`light-from-above' prior. Scientific Reports, 2018, 8, 15131.	1.6	4
60	Perceptual Robotics. , 2008, , 1481-1498.		4
61	Object Recognition in Humans and Machines. , 2007, , 89-104.		4
62	Learning to recognize face shapes through serial exploration. Experimental Brain Research, 2013, 226, 513-523.	0.7	3
63	Motor-visual neurons and action recognition in social interactions. Behavioral and Brain Sciences, 2014, 37, 197-198.	0.4	1
64	Visuomotor Control in Flies and Behavior — based Agents. Studies in Fuzziness and Soft Computing, 2003, , 89-117.	0.6	1
65	Assessing the contribution of active somatosensory stimulation to self-acceleration perception in dynamic driving simulators. PLoS ONE, 2021, 16, e0259015.	1.1	1
66	An integrated approach to the study of object features in visual recognition. Network: Computation in Neural Systems, 1995, 6, 603-618.	2.2	0
67	Navigation mit Schnappschüssen. Informatik Aktuell, 1998, , 421-428.	0.4	0