Ronald J Pugmire

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11365987/ronald-j-pugmire-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

131 6,150 44 75 g-index

141 6,529 6.3 4.9 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
131	Solid state structure of (pentamethylcyclopentadienyl)(2,4-dimethylpentadienyl)iron, Fe(C5Me5)(2,4-C7H11), and its incorporation into silica aerogels. <i>Polyhedron</i> , 2016 , 116, 76-81	2.7	2
130	Modeling Light Gas and Tar Yields from Pyrolysis of Green River Oil Shale Demineralized Kerogen Using the Chemical Percolation Devolatilization Model. <i>Energy & Energy & Ener</i>	4.1	16
129	Characterization of Macromolecular Structure Elements from a Green River Oil Shale, I. Extracts. <i>Energy & Energy & Ener</i>	4.1	46
128	Characterization of Macromolecular Structure Elements from a Green River Oil Shale, II. Characterization of Pyrolysis Products by 13C NMR, GC/MS, and FTIR. <i>Energy & amp; Fuels</i> , 2014 , 28, 29.	59 ⁴ 2 ¹ 970	o ⁶¹
127	Characterization of Macromolecular Structure of Pyrolysis Products from a Colorado Green River Oil Shale. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 15522-15532	3.9	43
126	The Effect of Coal Composition on Ignition and Flame Stability in Coaxial Oxy-Fuel Turbulent Diffusion Flames. <i>Energy & Diffusion Flames</i> .	4.1	17
125	Three-Dimensional Structure of the Siskin Green River Oil Shale Kerogen Model: A Comparison between Calculated and Observed Properties. <i>Energy & Energy & E</i>	4.1	75
124	Modeling of Asphaltenes: Assessment of Sensitivity of 13C Solid State NMR to Molecular Structure. <i>Energy & Description of Sensitivity of 13C Solid State NMR to Molecular Structure (Sensitivity of 13C Solid State NMR)</i>	4.1	13
123	Synthetic Doped Amorphous Ferrihydrite for the Fischer Tropsch Synthesis of Alternative Fuels. <i>Industrial & Chemistry Research</i> , 2012 , 51, 4515-4522	3.9	4
122	Solid-state 13C NMR investigations of cyclophanes: [2.2]paracyclophane and 1,8-dioxa[8](2,7)pyrenophane. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5193-8	2.8	5
121	Ironteria Aerogels Doped with Palladium as Watertas Shift Catalysts for the Production of Hydrogen. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 1652-1657	3.9	10
120	Solid-State NMR spectra and long, intra-dimer bonding in the pi-[TTF](2)(2+) (TTF = tetrathiafulvalene) dication. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 6622-9	2.8	19
119	Solid-state 13C NMR investigations of 4,7-dihydro-1H-tricyclopenta[def,jkl,pqr]triphenylene (sumanene) and indeno[1,2,3-cd]fluoranthene: Buckminsterfullerene moieties. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 7934-41	3.6	13
118	Iron Aerogel and Xerogel Catalysts for Fischer⊞ropsch Synthesis of Diesel Fuel. <i>Energy & Diesel Fuels</i> , 2009 , 23, 14-18	4.1	27
117	A simple synthesis of catalytically active, high surface area ceria aerogels. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 5509-5514	3.9	28
116	Water Gas Shift Catalysis Using Iron Aerogels Doped with Palladium by the Gas-Phase Incorporation Method. <i>Energy & Doped & Do</i>	4.1	13
115	Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals. <i>International Journal of Coal Geology</i> , 2008 , 76, 290-300	5.5	116

(2002-2007)

114	Model Compound Study of the Pathways for Aromatic Hydrocarbon Formation in Soot. <i>Energy & Energy Fuels</i> , 2007 , 21, 2584-2593	4.1	9
113	Ring current effects in crystals. Evidence from 13C chemical shift tensors for intermolecular shielding in 4,7-di-t-butylacenaphthene versus 4,7-di-t-butylacenaphthylene. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 2020-7	2.8	15
112	Solid-state 13C NMR and quantum chemical investigation of metal diene complexes. <i>Magnetic Resonance in Chemistry</i> , 2007 , 45, 393-400	2.1	4
111	Solid state NMR investigation of silica aerogel supported Fischer Tropsch catalysts. <i>Fuel Processing Technology</i> , 2007 , 88, 29-33	7.2	14
110	Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 7962-9	2.8	12
109	Prediction of Sooting Tendency for Hydrocarbon Liquids in Diffusion Flames. <i>Energy & amp; Fuels</i> , 2005 , 19, 2408-2415	4.1	49
108	Study of the Evolution of Soot from Various Fuels. <i>Energy & Energy & Energ</i>	4.1	16
107	Silica aerogel supported catalysts for Fischerllropsch synthesis. <i>Applied Catalysis A: General</i> , 2005 , 278, 233-238	5.1	66
106	Solid-state 15N NMR studies of tobacco leaves. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 21	5 5 2 / 1	11
105	Silica Xerogel Supported Cobalt Metal Fischer Tropsch Catalysts for Syngas to Diesel Range Fuel Conversion. <i>Energy & Diesel Range Fuels</i> , 2004 , 18, 1519-1521	4.1	19
104	15N NMR Chemical Shift Tensors of Substituted Hexaazaisowurtzitanes: The Intermediates in the Synthesis of CL-20\(\text{I}\) Journal of Physical Chemistry A, 2004 , 108, 2638-2644	2.8	10
103	Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalytic flow reactor. <i>Fuel Processing Technology</i> , 2003 , 83, 27-38	7.2	47
102	The Study of Anthracene Aerosols by Solid-State NMR and ESR. Energy & amp; Fuels, 2003, 17, 738-743	4.1	13
101	Carbon-13 Chemical-Shift Tensors in Polycyclic Aromatic Compounds: Fluoranthene and Decacyclene. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 6477-6482	2.8	9
100	Determination of 13C Chemical Shift Tensors in the Presence of Hydrogen Bonding and 14N Quadrupolar Coupling: p-Aminosalicylic Acid, Isoniazid, and Pyrazinamide. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 11375-11379	2.8	12
99	A New Method for Measuring the Graphite Content of Anthracite Coals and Soots. <i>Energy & Energy & Ener</i>	4.1	26
98	15N Chemical Shift Tensors of 冊MX. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 6352-6357	2.8	12
97	Production of Diethyl Carbonate from Ethanol and Carbon Monoxide over a Heterogeneous Catalyst. <i>Energy & Documents</i> 2002, 16, 177-181	4.1	97

96	13C Chemical-shift tensors in an analogous series of heterosubstituted polycyclic aromatic compounds. <i>Magnetic Resonance in Chemistry</i> , 2001 , 39, 115-121	2.1	7
95	A novel dipolar dephasing method for the slow magic angle turning experiment. <i>Journal of Magnetic Resonance</i> , 2001 , 152, 7-13	3	5
94	Investigation of the Structural Conformation of Biphenyl by Solid State 13C NMR and Quantum Chemical NMR Shift Calculations. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 6780-6784	2.8	48
93	Structural Determination in Carbonaceous Solids Using Advanced Solid State NMR Techniques. <i>Energy & Description of the Energy & Description o</i>	4.1	59
92	Cluster Analysis of 13C Chemical Shift Tensor Principal Values in Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2001 , 105, 7468-7472	2.8	13
91	13C NMR Analysis of Soot Produced from Model Compounds and a Coal. <i>Energy & Coals, Energy & Coals, 2001</i> , 15, 961-971	4.1	120
90	Modified spectral editing methods for (13)C CP/MAS experiments in solids. <i>Journal of Magnetic Resonance</i> , 2000 , 142, 326-30	3	26
89	1H dynamic nuclear polarization in supercritical ethylene at 1.4 T. <i>Journal of Magnetic Resonance</i> , 2000 , 143, 233-9	3	8
88	A high-resolution (13)C 3D CSA-CSA-CSA correlation experiment by means of magic angle turning. <i>Journal of Magnetic Resonance</i> , 2000 , 145, 230-6	3	2
87	H and 15N Dynamic Nuclear Polarization Studies of Carbazole. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 4413-4420	2.8	15
86	Carbon-13 Shift Tensors in Polycyclic Aromatic Compounds. 8.1 A Low-Temperature NMR Study of Coronene and Corannulene. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 149-155	2.8	42
85	Carbon-13 Chemical-Shift Tensors in Polycyclic Aromatic Compounds. 9.1 Biphenylene. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8290-8295	2.8	17
84	Characterization of fine particulate matter produced by combustion of residual fuel oil. <i>Journal of the Air and Waste Management Association</i> , 2000 , 50, 1106-14	2.4	61
83	Modeling Nitrogen Evolution during Coal Pyrolysis Based on a Global Free-Radical Mechanism. <i>Energy & Energy & </i>	4.1	33
82	Modeling of the 15N and 13C Chemical Shift Tensors in Purine. ACS Symposium Series, 1999, 162-176	0.4	2
81	Development and Application of a Correlation of 13C NMR Chemical Structural Analyses of Coal Based on Elemental Composition and Volatile Matter Content. <i>Energy & Description and Elemental Composition and Volatile Matter Content. Energy & Description and Elemental Composition and Volatile Matter Content. Energy & Description and Elemental Composition and Volatile Matter Content. Energy & Description and Content and C</i>	4.1	140
80	15N Chemical Shift Tensors in Nucleic Acid Bases. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9863-9869	16.4	76
79	Solid State NMR and Wide Angle X-ray Diffraction Studies of Supercritical Fluid CO2-Treated Poly(ethylene terephthalate). <i>Macromolecules</i> , 1998 , 31, 9238-9246	5.5	23

78 (overseas Edition), 1998, 7, 106-114 A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor 1.7 126 77 principal values. Molecular Physics, 1998, 95, 1113-1126 15N Chemical Shift Principal Values in Nitrogen Heterocycles. Journal of the American Chemical 76 16.4 96 Society, 1997, 119, 9804-9809 Solid State 15N and 13C NMR Study of Several Metal 5,10,15,20-Tetraphenylporphyrin Complexes. 16.4 75 Journal of the American Chemical Society, 1997, 119, 7114-7120 Solid-State 13C NMR Measurements in Methoxynaphthalenes: Determination of the Substituent 2.8 10 74 Chemical Shift Effects in the Principal Values. Journal of Physical Chemistry A, 1997, 101, 9169-9175 15N CPMAS NMR of the Argonne Premium Coals. Energy & Damp; Fuels, 1997, 11, 491-494 4.1 73 43 CO2 Clustering of 1-Decanol and Methanol in Supercritical Fluids by 13C Nuclear Spin[lattice 72 21 3.4 Relaxation. Journal of Physical Chemistry B, 1997, 101, 2923-2928 Dynamic nuclear polarization of nitrogen-15 in benzamide. Solid State Nuclear Magnetic Resonance, 3.1 15 **1997**, 8, 129-37 A High-Resolution 3D Separated-Local-Field Experiment by Means of Magic-Angle Turning. Journal 70 3 12 of Magnetic Resonance, 1997, 126, 120-6 Technique for importing greater evolution resolution in multidimensional NMR spectrum. Journal 69 44 of Magnetic Resonance, 1997, 129, 134-44 Carbon-13 Chemical Shift Tensors and Molecular Conformation of Anisole. The Journal of Physical 68 25 Chemistry, 1996, 100, 8268-8272 Glass and Crystal Formation in Binary Aromatic Mixtures: A Mechanism for Reducing Spin[lattice 67 Relaxation Times. The Journal of Physical Chemistry, 1996, 100, 18550-18553 Effects of Hydrogen Bonding in the Calculation of 15N Chemical Shift Tensors: Benzamide. Journal 16.4 66 59 of the American Chemical Society, 1996, 118, 5488-5489 Coal Structure from Solid State NMR 1996, 65 2 Fluid Structures of CO2 and CO2 12H4 Mixture at Supercritical Fluid and Liquid Densities by Nuclear 64 2.1 9 SpinIlattice Relaxation Measurements. Magnetic Resonance in Chemistry, 1996, 34, 479-488 A new high pressure sapphire nuclear magnetic resonance cell. Review of Scientific Instruments, 63 1.7 30 **1996**, 67, 240-243 Use of relaxation agent doping to shorten very long spin-lattice relaxation times in a magic-angle 62 3.1 5 turning experiment. Solid State Nuclear Magnetic Resonance, 1995, 5, 257-62 The Use of Anisotropic 13C Chemical Shifts To Study the Side-Chain Conformation of 61 Polycrystalline 2-Methoxydibenzofuran. Journal of the American Chemical Society, 1995, 117, 11984-11988.

Dynamic nuclear polarization of organic compound doped with free radicals. Acta Physica Sinica

60	Computerized analysis of 2D INADEQUATE spectra to assign chemical shifts in aromatic compounds. <i>Magnetic Resonance in Chemistry</i> , 1995 , 33, 803-811	2.1	3
59	Measurement of 13C chemical shift tensor principal values with a magic-angle turning experiment. <i>Solid State Nuclear Magnetic Resonance</i> , 1994 , 3, 181-97	3.1	45
58	The Structure and Reaction Processes of Coal 1994 ,		92
57	Structure determination of a new saponin from the plant Alphitonia zizyphoides by NMR spectroscopy. <i>Magnetic Resonance in Chemistry</i> , 1993 , 31, 472-480	2.1	14
56	Improvements to the magic angle hopping experiment. <i>Solid State Nuclear Magnetic Resonance</i> , 1993 , 2, 235-43	3.1	7
55	13C NMR Techniques for Structural Studies of Coals and Coal Chars 1992 , 215-254		8
54	Measurement of 13C Chemical-Shift Anisotropy in Coal. Advances in Chemistry Series, 1992, 419-439		2
53	Revised structure of bistramide A (bistratene A): application of a new program for the automated analysis of 2D INADEQUATE spectra. <i>Journal of the American Chemical Society</i> , 1992 , 114, 1110-1111	16.4	57
52	Improvements in the computerized analysis of 2D INADEQUATE spectra. <i>Analytical Chemistry</i> , 1992 , 64, 3133-49	7.8	38
51	Applications of the improved computerized analysis of 2D INADEQUATE spectra. <i>Analytical Chemistry</i> , 1992 , 64, 3150-60	7.8	24
50	Chemical percolation model for devolatilization. 3. Direct use of carbon-13 NMR data to predict effects of coal type. <i>Energy & Direct (March 2018)</i> , 6, 414-431	4.1	284
49	Carbon-13 chemical shift tensors in aromatic compounds. 4. Substituted naphthalenes. <i>Journal of the American Chemical Society</i> , 1992 , 114, 2832-2836	16.4	17
48	Chemical structure of char in the transition from devolatilization to combustion. <i>Energy & amp; Fuels</i> , 1992 , 6, 643-650	4.1	31
47	Selective saturation and inversion of multiple resonances in high-resolution solid-state 13C experiments using slow spinning CP/MAS and tailored DANTE pulse sequences. <i>Solid State Nuclear Magnetic Resonance</i> , 1992 , 1, 185-95	3.1	1
46	High resolution Chromatographic characterization of depolymerized coals of different rank: aliphatic and aromatic hydrocarbons. <i>Fuel</i> , 1992 , 71, 19-29	7.1	18
45	Structural evolution of matched tar-char pairs in rapid pyrolysis experiments. Fuel, 1991 , 70, 414-423	7.1	50
44	Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. <i>Energy & Double Supposed Services</i> , 1990 , 4, 54-60	4.1	197
43	Chemical model of coal devolatilization using percolation lattice statistics. <i>Energy & amp; Fuels</i> , 1989 , 3, 175-186	4.1	347

42	Carbon-13 solid-state NMR of Argonne-premium coals. <i>Energy & Energy & Ener</i>	4.1	470
41	Quantitative determination of different carbon types in fusinite and anthracite coals from carbon-13 nuclear magnetic resonance chemical shielding line-shape analysis. <i>Analytical Chemistry</i> , 1988 , 60, 1574-1579	7.8	27
40	An Integrated Spectroscopic Approach to the Chemical Characterization of Pyrolysis Oils. <i>ACS Symposium Series</i> , 1988 , 189-202	0.4	
39	Structural variations and evidence of segmental motion in the aliphatic region in coals observed with dipolar-dephasing NMR. <i>Energy & Description</i> 2015 (1987), 1, 50-55	4.1	24
38	13C chemical shielding anisotropy studied by variable-angle sample spinning. <i>Journal of Magnetic Resonance</i> , 1987 , 71, 476-479		6
37	An efficient double-tuned 13C/1H probe circuit for CP/MAS NMR and its importance in linewidths. <i>Journal of Magnetic Resonance</i> , 1987 , 71, 485-494		4
36	Correlation of ring nitrogen substituents with carbon-13 nuclear magnetic resonance data in azoloazines. <i>Journal of Heterocyclic Chemistry</i> , 1987 , 24, 805-809	1.9	25
35	The use of high-field carbon-13 NMR spectroscopy to characterize chiral centers in isopranes. <i>Magnetic Resonance in Chemistry</i> , 1986 , 24, 191-198	2.1	14
34	Comparison of physical and chemical properties of maceral groups separated by density dradient centrifugation. <i>International Journal of Coal Geology</i> , 1985 , 5, 315-338	5.5	20
33	Cylindrical spinner and speed controller for magic angle spinning nuclear magnetic resonance. <i>Review of Scientific Instruments</i> , 1984 , 55, 516-520	1.7	18
32	New solid state NMR techniques in coal analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 1984 , 3, 144-147	14.6	9
31	Solid state magnetic resonance spectra of Illinois No. 6 coal and some reductive alkylation products. <i>Fuel</i> , 1984 , 63, 513-521	7.1	54
30	Application of new 13C n.m.r. techniques to the study of products from catalytic hydrodeoxygenation of SRC-II liquids. <i>Fuel</i> , 1984 , 63, 525-529	7.1	17
29	Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 1. Highly protonated molecules. <i>Journal of the American Chemical Society</i> , 1983 , 105, 2133-2141	16.4	162
28	Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 2. Molecules of low or remote protonation. <i>Journal of the American Chemical Society</i> , 1983 , 105, 2142-214	7 ^{16.4}	104
27	Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 3. Effect of the carbon-13-proton dipolar interaction on cross polarization and carbon-proton dephasing. <i>Journal of the American Chemical Society</i> , 1983 , 105, 6697-6704	16.4	224
26	Nuclear magnetic resonance spectroscopy of soils and related materials. Relaxation of 13C nuclei in cross polarization nuclear magnetic resonance experiments. <i>Organic Geochemistry</i> , 1983 , 5, 121-129	3.1	66
25	Carbon-13 NMR spectra of macerals separated from individual coals. <i>Organic Geochemistry</i> , 1982 , 4, 79-	·8 4 1	22

24	Solution and solid carbon-13 magnetic resonance study of the conformation of 9,10-dihydroanthracene and its 9,10-methylated derivatives. <i>Journal of the American Chemical Society</i> , 1981 , 103, 4817-4824	16.4	45
23	Carbon-13 CP/MAS Study of Coal Macerals of Varying Rank. ACS Symposium Series, 1981, 23-42	0.4	7
22	Carbon-13 CP/MAS spectroscopy of coal macerals. Fuel, 1981, 60, 717-722	7.1	76
21	Cross-polarization 13C-NMR spectroscopy with thagic anglet pinning characterizes organic matter in whole soils. <i>Nature</i> , 1981 , 294, 648-650	50.4	48
20	A comparison of the carbon-13 n.m.r. spectra of solid coals and their liquids obtained by catalytic hydrogenation. <i>Fuel</i> , 1979 , 58, 11-16	7.1	38
19	Carbon-13 NMR investigation of the structure of hydroxy-azoloazines with a bridgehead nitrogen. Journal of Heterocyclic Chemistry, 1977 , 14, 1403-1408	1.9	7
18	Carbon-13 magnetic resonance of coal-derived liquids. <i>Fuel</i> , 1977 , 56, 295-301	7.1	46
17	Carbon-13 NMR investigation of the protonation and quaternization of azoloazines with a bridgehead nitrogen. <i>Journal of Heterocyclic Chemistry</i> , 1976 , 13, 1057-1062	1.9	9
16	Carbon-13 magnetic resonance. XXVI. A quantitative determination of the tautomeric populations of certain purines. <i>Journal of the American Chemical Society</i> , 1975 , 97, 4636-42	16.4	216
15	Carbon-13 magnetic resonance. XXV. A basic set of parameters for the investigation of tautomerism im purines. Established from carbon-13 magnetic resonance studies using certain purines and pyrrolo[2,3-d]pyrimidines. <i>Journal of the American Chemical Society</i> , 1975 , 97, 4627-36	16.4	156
14	A study on the ring contraction of 5-diazo-1-methyluracil-6-methanolate and a convenient method for establishing the site of heterocyclic N-substitution. <i>Journal of Heterocyclic Chemistry</i> , 1974 , 11, 645-6	647	15
13	Carbon-13 nuclear relaxation measurements in nicotinamide adenine dinucleotide and adenosine monophosphate. <i>Journal of the American Chemical Society</i> , 1974 , 96, 2885-7	16.4	19
12	Carbon-13 magnetic resonance investigation of retinal isomers and related compounds. <i>Journal of the American Chemical Society</i> , 1974 , 96, 7008-14	16.4	54
11	Carbon-13 NMR spectra of C-nucleosides. Showdomycin and Pseudouridine. <i>Journal of Heterocyclic Chemistry</i> , 1973 , 10, 427-429	1.9	15
10	Carbon-13 NMR spectra of C-nucleosides. II. A study on the tautomerism of formycin and formycin B by the use of CMR spectroscopy. <i>Journal of Heterocyclic Chemistry</i> , 1973 , 10, 431-433	1.9	27
9	Carbon-13 magnetic resonance. XXII. The N-methylpurines. <i>Journal of the American Chemical Society</i> , 1973 , 95, 2791-6	16.4	55
8	Rotational diffusion anisotropy in near ellipsoidal molecules. <i>Journal of the American Chemical Society</i> , 1973 , 95, 8465-8467	16.4	27
7	Torsional frequencies and barriers to methyl rotation in isobutylene, O -xylene, and durene. <i>Journal of Chemical Physics</i> . 1973 . 58. 1438-1445	3.9	25

LIST OF PUBLICATIONS

6	Carbon-13 magnetic resonance. XIX. Benzimidazole, purine, and their anionic and cationic species. Journal of the American Chemical Society, 1971 , 93, 1880-1887	16.4	124
5	Carbon-13 magnetic resonance. XX. 4-Azaindene (pyrrocoline) and related bridgehead nitrogen heterocycles. <i>Journal of the American Chemical Society</i> , 1971 , 93, 1887-1893	16.4	55
4	Methyl Libration in Propane Measured with Neutron Inelastic Scattering. <i>Journal of Chemical Physics</i> , 1970 , 52, 4424-4436	3.9	55
3	Carbon-13 magnetic resonance. XIV. Aza-analogs of polycyclic aromatic hydrocarbons. <i>Journal of the American Chemical Society</i> , 1969 , 91, 6381-6389	16.4	98
2	Carbon-13 magnetic resonance. XII. Five-membered nitrogen heterocycles and their charged species. <i>Journal of the American Chemical Society</i> , 1968 , 90, 4232-4238	16.4	89
1	Carbon-13 magnetic resonance. X. Six-membered nitrogen heterocycles and their cations. <i>Journal of the American Chemical Society</i> , 1968 , 90, 697-706	16.4	159