Prosenjit Daw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11365115/publications.pdf

Version: 2024-02-01

		430874	552781
27	1,618	18	26
papers	citations	h-index	g-index
20	20	20	1660
30	30	30	1669
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct Synthesis of Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines and Alcohols Catalyzed by Cobalt. ACS Catalysis, 2017, 7, 7456-7460.	11.2	162
2	Manganese-Catalyzed \hat{l}_{\pm} -Alkylation of Ketones, Esters, and Amides Using Alcohols. ACS Catalysis, 2018, 8, 10300-10305.	11.2	161
3	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of Diols and Amines Catalyzed by Cobalt Pincer Complexes. Angewandte Chemie - International Edition, 2016, 55, 14373-14377.	13.8	158
4	Selective <i>N</i> -Formylation of Amines with H ₂ and CO ₂ Catalyzed by Cobalt Pincer Complexes. ACS Catalysis, 2017, 7, 2500-2504.	11.2	137
5	Synthesis of Pyrazines and Quinoxalines via Acceptorless Dehydrogenative Coupling Routes Catalyzed by Manganese Pincer Complexes. ACS Catalysis, 2018, 8, 7734-7741.	11.2	124
6	A Highly Efficient Catalyst for Selective Oxidative Scission of Olefins to Aldehydes: Abnormal-NHC–Ru(II) Complex in Oxidation Chemistry. Journal of the American Chemical Society, 2014, 136, 13987-13990.	13.7	119
7	Catalytic Conversion of Alcohols to Carboxylic Acid Salts and Hydrogen with Alkaline Water. ACS Catalysis, 2017, 7, 2786-2790.	11.2	101
8	Metal–Ligand Cooperation on a Diruthenium Platform: Selective Imine Formation through Acceptorless Dehydrogenative Coupling of Alcohols with Amines. Chemistry - A European Journal, 2014, 20, 6542-6551.	3.3	97
9	Acceptorless Dehydrogenative Coupling Using Ammonia: Direct Synthesis of N-Heteroaromatics from Diols Catalyzed by Ruthenium. Journal of the American Chemical Society, 2018, 140, 11931-11934.	13.7	76
10	Bifunctional Water Activation for Catalytic Hydration of Organonitriles. Organometallics, 2012, 31, 3790-3797.	2.3	68
11	Multifaceted Coordination of Naphthyridineâ^Functionalized N-Heterocyclic Carbene: A Novel "lr ^{III} (C ^{â^§} N)(C ^{â^§} C)―Compound and Its Evaluation as Transfer Hydrogenation Catalyst. Inorganic Chemistry, 2009, 48, 11114-11122.	4.0	59
12	Direct Synthesis of Amides by Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and Ammonia Catalyzed by a Manganese Pincer Complex: Unexpected Crucial Role of Base. Journal of the American Chemical Society, 2019, 141, 12202-12206.	13.7	58
13	CO ₂ activation by manganese pincer complexes through different modes of metal–ligand cooperation. Dalton Transactions, 2019, 48, 14580-14584.	3.3	53
14	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of Diols and Amines Catalyzed by Cobalt Pincer Complexes. Angewandte Chemie, 2016, 128, 14585-14589.	2.0	44
15	Amideâ€Functionalized Naphthyridines on a Rh ^{II} –Rh ^{II} Platform: Effect of Steric Crowding, Hemilability, and Hydrogenâ€Bonding Interactions on the Structural Diversity and Catalytic Activity of Dirhodium(II) Complexes. Chemistry - A European Journal, 2014, 20, 16537-16549.	3.3	34
16	A Rull–N-heterocyclic carbene (NHC) complex from metal–metal singly bonded diruthenium(I) precursor: Synthesis, structure and catalytic evaluation. Journal of Organometallic Chemistry, 2011, 696, 1248-1257.	1.8	25
17	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie - International Edition, 2019, 58, 3373-3377.	13.8	23
18	Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics, 2020, 39, 279-285.	2.3	22

#	Article	IF	Citations
19	Cyclometalations on the Imidazo[1,2-a][1,8]naphthyridine Framework. Organometallics, 2013, 32, 4306-4313.	2.3	18
20	Oxidative Route to Abnormal NHC Compounds from Singly Bonded [M–M] (M = Ru, Rh, Pd) Precursors. Organometallics, 2015, 34, 5509-5512.	2.3	16
21	A Rh(I) complex with an annulated N-heterocyclic carbene ligand for E-selective alkyne hydrosilylation. Polyhedron, 2019, 172, 167-174.	2.2	16
22	A Proton-Responsive Annulated Mesoionic Carbene (MIC) Scaffold on Ir Complex for Proton/Hydride Shuttle: An Experimental and Computational Investigation on Reductive Amination of Aldehyde. Organometallics, 2020, 39, 3849-3863.	2.3	14
23	Palladium complexes with an annellated mesoionic carbene (MIC) ligand: catalytic sequential Sonogashira coupling/cyclization reaction for one-pot synthesis of benzofuran, indole, isocoumarin and isoquinolone derivatives. Dalton Transactions, 2020, 49, 15238-15248.	3.3	13
24	Homogeneous first-row transition metal catalyst for sustainable hydrogen production and organic transformation from methanol, formic acid, and bio-alcohols. Tetrahedron, 2021, 99, 132473.	1.9	9
25	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie, 2019, 131, 3411-3415.	2.0	7
26	Cyclometalated Ir–Sn Construct for Cyanosilylation. Journal of Cluster Science, 2012, 23, 839-851.	3.3	4
27	Application of pincer metal complexes in catalytic transformations. , 2022, , 1-68.		O