Pedro Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11363734/publications.pdf

Version: 2024-02-01

44 papers

1,123 citations

³⁶¹⁴¹³
20
h-index

33 g-index

44 all docs

44 docs citations

44 times ranked 1766 citing authors

#	Article	IF	CITATIONS
1	Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration. Tissue Engineering - Part A, 2021, 27, 74-86.	3.1	20
2	Laminin-1 Peptides Conjugated to Fibrin Hydrogels Promote Salivary Gland Regeneration in Irradiated Mouse Submandibular Glands. Frontiers in Bioengineering and Biotechnology, 2021, 9, 729180.	4.1	7
3	Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. Science Advances, 2021, 7, eabe5671.	10.3	16
4	Sex-dependent Regeneration Patterns in Mouse Submandibular Glands. Journal of Histochemistry and Cytochemistry, 2020, 68, 305-318.	2.5	6
5	PEGylated Amine-Functionalized Poly(Îμ-caprolactone) for the Delivery of Plasmid DNA. Materials, 2020, 13, 898.	2.9	8
6	Cadherinâ€11 binds to PDGFRβ and enhances cell proliferation and tissue regeneration via the PDGFRâ€AKT signaling axis. FASEB Journal, 2020, 34, 3792-3804.	0.5	13
7	Engineering the mode of morphogenetic signal presentation to promote branching from salivary gland spheroids in 3D hydrogels. Acta Biomaterialia, 2020, 105, 121-130.	8.3	4
8	Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Scientific Reports, 2019, 9, 9750.	3.3	21
9	Synergistic effects of laminin-1 peptides, VEGF and FGF9 on salivary gland regeneration. Acta Biomaterialia, 2019, 91, 186-194.	8.3	25
10	NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Research, 2018, 26, 55-66.	0.7	24
11	Derivation of neural crest stem cells from human epidermal keratinocytes requires FGFâ€2, IGFâ€1, and inhibition of TGFâ€Î21. Bioengineering and Translational Medicine, 2018, 3, 256-264.	7.1	8
12	Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Research, 2018, 30, 122-129.	0.7	69
13	Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates. Stem Cells, 2017, 35, 1402-1415.	3.2	23
14	NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells, 2017, 35, 207-221.	3.2	30
15	Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function. PLoS ONE, 2017, 12, e0187069.	2.5	25
16	Laminin-111 Peptides Conjugated to Fibrin Hydrogels Promote Formation of Lumen Containing Parotid Gland Cell Clusters. Biomacromolecules, 2016, 17, 2293-2301.	5.4	32
17	Magnetofection Mediated Transient NANOG Overexpression Enhances Proliferation and Myogenic Differentiation of Human Hair Follicle Derived Mesenchymal Stem Cells. Bioconjugate Chemistry, 2015, 26, 1314-1327.	3.6	19
18	The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling. Science Signaling, 2015, 8, ra115.	3.6	18

#	Article	IF	CITATIONS
19	Lentivirus Live Cell Array for Quantitative Assessment of Gene and Pathway Activation during Myogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0141365.	2.5	3
20	Serumâ€free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnology Progress, 2014, 30, 974-983.	2.6	71
21	Differential and synergistic effects of mechanical stimulation andÂgrowth factor presentation on vascular wall function. Biomaterials, 2013, 34, 7281-7291.	11.4	14
22	Bioengineered Skin Substitutes. Methods in Molecular Biology, 2013, 1001, 267-278.	0.9	6
23	JNK is a novel regulator of intercellular adhesion. Tissue Barriers, 2013, 1, e26845.	3.2	30
24	Growth Factors Polymerized Within Fibrin Hydrogel Promote Amylase Production in Parotid Cells. Tissue Engineering - Part A, 2013, 19, 2215-2225.	3.1	28
25	Compliance-induced adherens junction formation in epithelial cells and tissues is regulated by JNK. Journal of Cell Science, 2013, 126, 2718-29.	2.0	22
26	Gene Therapy for Tissue Engineering. Handbook Series for Mechanical Engineering, 2013, , 433-460.	0.0	0
27	Adherens Junction Formation Inhibits Lentivirus Entry and Gene Transfer. PLoS ONE, 2013, 8, e79265.	2.5	5
28	Nanog Reverses the Effects of Organismal Aging on Mesenchymal Stem Cell Proliferation and Myogenic Differentiation Potential. Stem Cells, 2012, 30, 2746-2759.	3.2	81
29	Detection of DNA Hybridization via Fluorescence Intensity Variations of ZnSe-DNA Quantum Dot Biosensors. Analytical Letters, 2012, 45, 227-241.	1.8	3
30	Vascularization of the Dermal Support Enhances Wound Re-Epithelialization by <i>In Situ</i> Delivery of Epidermal Keratinocytes. Tissue Engineering - Part A, 2011, 17, 665-675.	3.1	43
31	Fibrin-mediated lentivirus gene transfer: Implications for lentivirus microarrays. Journal of Controlled Release, 2010, 144, 213-220.	9.9	30
32	Lentiviral microarrays for real-time monitoring of gene expression dynamics. Lab on A Chip, 2010, 10, 1967.	6.0	21
33	Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials, 2009, 30, 3790-3799.	11.4	93
34	Regulated Insulin Delivery From Human Epidermal Cells Reverses Hyperglycemia. Molecular Therapy, 2008, 16, 1146-1153.	8.2	24
35	Efficient Retroviral Gene Transfer to Epidermal Stem Cells. Methods in Molecular Biology, 2008, 433, 367-380.	0.9	7
36	Efficient Retroviral Gene Transfer to Epidermal Stem Cells. , 2008, , 367-380.		0

#	ARTICLE	IF	CITATION
37	Efficient Production of Bioactive Insulin from Human Epidermal Keratinocytes and Tissue-Engineered Skin Substitutes: Implications for Treatment of Diabetes. Tissue Engineering, 2007, 13, 2119-2131.	4.6	20
38	Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell–matrix interactions. Journal of Biomedical Materials Research - Part A, 2007, 80A, 362-371.	4.0	127
39	Efficient Production of Bioactive Insulin from Human Epidermal Keratinocytes and Tissue-Engineered Skin Substitutes: Implications for Treatment of Diabetes. Tissue Engineering, 2007, .	4.6	0
40	DNA Hybridization Detection using Fluorescent Zinc Selenide Quantum Dots. Materials Research Society Symposia Proceedings, 2006, 951, 1.	0.1	0
41	Stoichiometric limitations in assembly of active recombinant retrovirus. Biotechnology and Bioengineering, 2005, 90, 781-792.	3.3	9
42	Efficient Gene Transfer to Human Epidermal Keratinocytes on Fibronectin: In Vitro Evidence for Transduction of Epidermal Stem Cells. Molecular Therapy, 2005, 11, 969-979.	8.2	26
43	Retrovirus-Associated Heparan Sulfate Mediates Immobilization and Gene Transfer on Recombinant Fibronectin. Journal of Virology, 2002, 76, 8722-8728.	3.4	37
44	High Efficiencies of Gene Transfer with Immobilized Recombinant Retrovirus: Kinetics and Optimization. Biotechnology Progress, 2001, 17, 587-596.	2.6	55