
Graciela Diaz-Torga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1136276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the D2 Dopamine Receptor Alters GH and IGF-I Secretion and Causes Dwarfism in Male Mice. Endocrinology, 2002, 143, 1270-1279.	1.4	83
2	Brain sexual differentiation and gonadotropins secretion in the rat. Cellular and Molecular Neurobiology, 1997, 17, 699-715.	1.7	79
3	Increased Pituitary Vascular Endothelial Growth Factor-A in Dopaminergic D2 Receptor Knockout Female Mice. Endocrinology, 2005, 146, 2952-2962.	1.4	70
4	Endocrine studies in ivermectin-treated heifers from birth to puberty Journal of Animal Science, 2000, 78, 817.	0.2	51
5	The pituitary TGFβ1 system as a novel target for the treatment of resistant prolactinomas. Journal of Endocrinology, 2016, 228, R73-R83.	1.2	50
6	New Insights into the Endocrine and Metabolic Roles of Dopamine D2 Receptors Gained from the <i>Drd2</i> ^{–/–} Mouse. Neuroendocrinology, 2010, 92, 207-214.	1.2	37
7	Metabolic cues for puberty onset in free grazing holstein heifers naturally infected with nematodes. Theriogenology, 2001, 56, 111-122.	0.9	36
8	Dopaminergic D2 Receptor Knockout Mouse: An Animal Model of Prolactinoma. , 2006, 35, 50-63.		32
9	Active and Total Transforming Growth Factor-β1 Are Differentially Regulated by Dopamine and Estradiol in the Pituitary. Endocrinology, 2011, 152, 2722-2730.	1.4	31
10	Effects of continuous ivermectin treatment from birth to puberty on growth and reproduction in dairy heifers Journal of Animal Science, 1999, 77, 1329.	0.2	25
11	Thrombospondin-1 (TSP-1) Analogs ABT-510 and ABT-898 Inhibit Prolactinoma Growth and Recover Active Pituitary Transforming Growth Factor-β1 (TGF-β1). Endocrinology, 2012, 153, 3861-3871.	1.4	25
12	GH in the dwarf dopaminergic D2 receptor knockout mouse: somatotrope population, GH release, and responsiveness to GH-releasing factors and somatostatin. Journal of Endocrinology, 2006, 190, 611-619.	1.2	23
13	Hypothalamic orexin, OX1, αMSH, NPY and MCRs expression in dopaminergic D2R knockout mice. Neuropeptides, 2009, 43, 267-274.	0.9	22
14	Different kinases regulate activation of voltage-dependent calcium channels by depolarization in GH3 cells. American Journal of Physiology - Cell Physiology, 2007, 293, C951-C959.	2.1	21
15	Sex Differences in the Pituitary Transforming Growth Factor-β1 System: Studies in a Model of Resistant Prolactinomas. Endocrinology, 2013, 154, 4192-4205.	1.4	20
16	Diazapam: Endocrine effects and hypothalamic binding sites in the developing male and female rat. Life Sciences, 1989, 45, 567-575.	2.0	19
17	Ontogenic studies of the neural control of adenohypophyseal hormones in the rat. II. prolactin. Cellular and Molecular Neurobiology, 1992, 12, 1-19.	1.7	19
18	Angiotensin and calcium signaling in the pituitary and hypothalamus. Cellular and Molecular Neurobiology, 2002, 22, 315-333.	1.7	19

GRACIELA DIAZ-TORGA

#	Article	IF	CITATIONS
19	PTTG expression in different experimental and human prolactinomas in relation to dopaminergic control of lactotropes. Molecular Cancer, 2007, 6, 4.	7.9	19
20	Sex differences in the development of prolactinoma in mice overexpressing hCGÎ ² : role of TGFÎ ² 1. Journal of Endocrinology, 2017, 232, 535-546.	1.2	19
21	Participation of membrane progesterone receptor α in the inhibitory effect of progesterone on prolactin secretion. Journal of Neuroendocrinology, 2018, 30, e12614.	1.2	19
22	Angiotensin II-induced Ca2+mobilization and prolactin release in normal and hyperplastic pituitary cells. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E534-E540.	1.8	18
23	Desensitization of angiotensin II: effect on [Ca2+]i, inositol triphosphate, and prolactin in pituitary cells. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E462-E470.	1.8	17
24	Angiotensin II phosphorylation of extracellular signal-regulated kinases in rat anterior pituitary cells. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E645-E653.	1.8	17
25	Restoration by Bromocriptine of Glucocorticoid Receptors and Glucocorticoid Negative Feedback on Prolactin Secretion in Estrogen-Induced Pituitary Tumors. Neuroendocrinology, 1993, 58, 273-279.	1.2	16
26	Role of GPER in the anterior pituitary gland focusing on lactotroph function. Journal of Endocrinology, 2019, 240, 99-110.	1.2	16
27	Upregulation of angiotensin II type 2 receptor expression in estrogen-induced pituitary hyperplasia. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E786-E794.	1.8	15
28	Neurotransmitter Modulation of the GHRH-GH Axis. Frontiers of Hormone Research, 2010, 38, 59-69.	1.0	15
29	Fibroblast growth factor-2 in hyperplastic pituitaries of D2R knockout female mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1341-E1351.	1.8	14
30	Bromocriptine restores angiotensin II response in pituitary hyperplasia. Molecular and Cellular Endocrinology, 2000, 165, 67-74.	1.6	13
31	New insights into progesterone actions on prolactin secretion and prolactinoma development. Steroids, 2019, 152, 108496.	0.8	11
32	mPRs represent a novel target for PRL inhibition in experimental prolactinomas. Endocrine-Related Cancer, 2019, 26, 497-510.	1.6	11
33	Calcium influx and intracellular stores in angiotensin II stimulation of normal and hyperplastic pituitary cells. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E455-E463.	1.8	10
34	Sex differences in the pituitary TGFβ1 system: The role of TGFβ1 in prolactinoma development. Frontiers in Neuroendocrinology, 2018, 50, 118-122.	2.5	8
35	Biochemical parameters in the anterior pituitary during the course of tumorigenesis induced by diethylstilbestrol treatment. Journal of Steroid Biochemistry and Molecular Biology, 1994, 51, 183-189.	1.2	6
36	Sexual and ontogenic differences in K+-induced gonadotropin and prolactin release in vitro. Developmental Brain Research, 1992, 70, 103-108.	2.1	5

#	Article	IF	CITATIONS
37	Effect of Stage of Development and Sex on Gonadotropin-Releasing Hormone Secretion in In Vitro Hypothalamic Perifusion. Experimental Biology and Medicine, 1998, 217, 445-449.	1.1	5
38	Activin-inhibitory action on lactotrophs is decreased in lactotroph hyperplasia. Journal of Endocrinology, 2020, 244, 415-429.	1.2	4
39	TGFβ1 regulates prolactin secretion during postnatal development: gender differences. Journal of Endocrinology, 2020, 246, 29-39.	1.2	2
40	Oophorectomy improves pituitary activin inhibitory function preventing lactotroph hyperplasia development. Endocrine-Related Cancer, 2022, 29, 359-373.	1.6	2