
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11361860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews, 2005, 105, 1401-1444.	23.0	1,398
2	Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription. Journal of the American Chemical Society, 2001, 123, 8785-8789.	6.6	290
3	Stereochemical Effect of Evenâ~'Odd Connecting Links on Supramolecular Assemblies Made of 1-Glucosamide Bolaamphiphiles. Journal of the American Chemical Society, 1997, 119, 2812-2818.	6.6	234
4	Self-Assembly of a Sugar-Based Gelator in Water:  Its Remarkable Diversity in Gelation Ability and Aggregate Structure. Langmuir, 2001, 17, 7229-7232.	1.6	232
5	Dicarboxylic Oligopeptide Bolaamphiphiles:Â Proton-Triggered Self-Assembly of Microtubes with Loose Solid Surfaces. Langmuir, 1998, 14, 4978-4986.	1.6	224
6	Vesicle assembly in microtubes. Nature, 1996, 383, 487-488.	13.7	186
7	Spontaneous Fiber Formation and Hydrogelation of Nucleotide Bolaamphiphiles. Chemistry of Materials, 2002, 14, 3047-3053.	3.2	169
8	Internucleobase-Interaction-Directed Self-Assembly of Nanofibers from Homo- and Heteroditopic 1,ω-Nucleobase Bolaamphiphiles. Journal of the American Chemical Society, 2001, 123, 5947-5955.	6.6	162
9	Lipid Nanotubes and Microtubes:  Experimental Evidence for Unsymmetrical Monolayer Membrane Formation from Unsymmetrical Bolaamphiphiles. Langmuir, 2004, 20, 5969-5977.	1.6	156
10	Molecular-Level Helical Stack of a Nucleotide-Appended Oligo(p-phenylenevinylene) Directed by Supramolecular Self-Assembly with a Complementary Oligonucleotide as a Template. Journal of the American Chemical Society, 2006, 128, 13298-13304.	6.6	144
11	Chiral Amplification in the Transcription of Supramolecular Helicity into a Polymer Backbone. Angewandte Chemie - International Edition, 2005, 44, 2275-2279.	7.2	137
12	Oligonucleotide-Templated Self-Assembly of Nucleotide Bolaamphiphiles: DNA-Like Nanofibers Edged by a Double-Helical Arrangement of A–T Base Pairs. Angewandte Chemie - International Edition, 2003, 42, 1009-1012.	7.2	134
13	Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter, 2011, 7, 4539.	1.2	128
14	Functionalizable Organic Nanochannels Based on Lipid Nanotubes:  Encapsulation and Nanofluidic Behavior of Biomacromolecules. Chemistry of Materials, 2007, 19, 3553-3560.	3.2	110
15	Molecular Structure of Glucopyranosylamide Lipid and Nanotube Morphology. Langmuir, 2005, 21, 743-750.	1.6	93
16	Polymerization of Bolaform Butadiyne 1-Glucosamide in Self-Assembled Nanoscale-Fiber Morphology. Macromolecules, 1998, 31, 9403-9405.	2.2	89
17	Spontaneous Formation of Helically Twisted Fibers from 2-Glucosamide Bolaamphiphiles:Â Energy-Filtering Transmission Electron Microscopic Observation and Evenâ~'Odd Effect of Connecting Bridge. Langmuir, 1999, 15, 4757-4764.	1.6	88
18	Self-Assembly and Thermal Phase Transition Behavior of Unsymmetrical Bolaamphiphiles Having Glucose- and Amino-Hydrophilic Headgroups. Langmuir, 2007, 23, 4634-4641.	1.6	88

#	Article	IF	CITATIONS
19	Unsaturation Effect on Gelation Behavior of Aryl Glycolipids. Langmuir, 2004, 20, 2060-2065.	1.6	86
20	Self-organized nanotube materials and their application in bioengineering. Polymer Journal, 2014, 46, 831-858.	1.3	80
21	Soft Nanotube Hydrogels Functioning As Artificial Chaperones. ACS Nano, 2012, 6, 5249-5258.	7.3	74
22	Conformational and Thermal Phase Behavior of Oligomethylene Chains Constrained by Carbohydrate Hydrogen-Bond Networks. Journal of the American Chemical Society, 2000, 122, 12327-12333.	6.6	73
23	Polymerization in Nanometer-Sized Fibers:  Molecular Packing Order and Polymerizability. Macromolecules, 2000, 33, 9233-9238.	2.2	72
24	Supramolecular Self-Assembly into Biofunctional Soft Nanotubes: From Bilayers to Monolayers. Langmuir, 2016, 32, 12242-12264.	1.6	69
25	Noncovalent Formation of Polyglycine II-Type Structure by Hexagonal Self-Assembly of Linear Polymolecular Chains. Journal of the American Chemical Society, 1997, 119, 6209-6210.	6.6	68
26	Local Environment and Property of Water inside the Hollow Cylinder of a Lipid Nanotube. Langmuir, 2005, 21, 721-727.	1.6	67
27	Helical Arrays of CdS Nanoparticles Tracing on a Functionalized Chiral Template of Glycolipid Nanotubes. Chemistry of Materials, 2006, 18, 403-406.	3.2	65
28	Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence. Soft Matter, 2008, 4, 1681.	1.2	63
29	Supramolecular Nanotube Hydrogels: Remarkable Resistance Effect of Confined Proteins to Denaturants. Chemistry of Materials, 2009, 21, 5892-5898.	3.2	63
30	Soft Nanotubes Acting as a Light-Harvesting Antenna System. Chemistry of Materials, 2012, 24, 209-214.	3.2	59
31	Photoinitiated Polymerization of Columnar Stacks of Self-Assembled Trialkyl-1,3,5-benzenetricarboxamide Derivatives. Journal of the American Chemical Society, 2003, 125, 15935-15940.	6.6	57
32	Confinement Effect of Organic Nanotubes Toward Green Fluorescent Protein (GFP) Depending on the Inner Diameter Size. Chemistry - A European Journal, 2010, 16, 4217-4223.	1.7	56
33	Supramolecular Nanotube <i>endo</i> Sensing for a Guest Protein. Small, 2008, 4, 561-565.	5.2	51
34	Photoresponsive Soft Nanotubes for Controlled Guest Release. Chemistry - A European Journal, 2011, 17, 5251-5255.	1.7	45
35	Qualitative/chiral sensing of amino acids by naked-eye fluorescence change based on morphological transformation and hierarchizing in supramolecular assemblies of pyrene-conjugated glycolipids. Chemical Communications, 2015, 51, 11104-11107.	2.2	43
36	Multilayer structure of an unsymmetrical monolayer lipid membrane with a â€~head-to-tail' interface. Chemical Communications, 2001, , 2442-2443.	2.2	42

#	Article	IF	CITATIONS
37	Encapsulation of Ferritin within a Hollow Cylinder of Glycolipid Nanotubes. Chemistry Letters, 2005, 34, 232-233.	0.7	42
38	Photoinduced Morphological Transformations of Soft Nanotubes. Chemistry - A European Journal, 2015, 21, 8832-8839.	1.7	36
39	Polymorphism of monolayer lipid membrane structures made from unsymmetrical bolaamphiphiles. Carbohydrate Research, 2005, 340, 2502-2509.	1.1	35
40	Molecular Monolayer Nanotubes Having 7–9 nm Inner Diameters Covered with Different Inner and Outer Surfaces. Chemistry Letters, 2007, 36, 896-897.	0.7	35
41	Lipid Nanotube Tailored Fabrication of Uniquely Shaped Polydopamine Nanofibers as Photothermal Converters. Chemistry - A European Journal, 2016, 22, 4345-4350.	1.7	34
42	FT-IR Study of the Interlamellar Water Confined in Glycolipid Nanotube Walls. Langmuir, 2005, 21, 4610-4614.	1.6	32
43	Stabilization of an asymmetric bolaamphiphilic sugar-based crown ether hydrogel by hydrogen bonding interaction and its sol–gel transcription. Tetrahedron, 2007, 63, 7449-7456.	1.0	32
44	Hybrid Organic Nanotubes with Dual Functionalities Localized on Cylindrical Nanochannels Control the Release of Doxorubicin. Advanced Healthcare Materials, 2012, 1, 699-706.	3.9	30
45	A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly(ethylene glycol) and macrophage uptake. Acta Biomaterialia, 2013, 9, 4744-4753.	4.1	30
46	Supramolecular Polyglycine II-Type Structure of Glycylglycine Bolaamphiphile. Supramolecular Chemistry, 1998, 9, 183-189.	1.5	29
47	Cisplatin-encapsulated organic nanotubes by endo-complexation in the hollow cylinder. Chemical Communications, 2012, 48, 8625.	2.2	29
48	Functionalized organic nanotubes as tubular nonviral gene transfer vector. Journal of Controlled Release, 2011, 156, 70-75.	4.8	26
49	Biologically responsive, sustainable release from metallo-drug coordinated 1D nanostructures. Journal of Materials Chemistry B, 2013, 1, 276-283.	2.9	26
50	Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2016, 120, 4496-4507.	1.2	26
51	Soft nanotubes acting as confinement effecters and chirality inducers for achiral polythiophenes. Chemical Communications, 2016, 52, 1346-1349.	2.2	26
52	Non-mesogenic crystal structure of a synthetic 1-d-glucosamide bolaamphiphile. Carbohydrate Research, 1997, 302, 139-147.	1.1	24
53	Synthesis of Novel α,ω-Type 1-Glucosamide and 1-Galactosamide Bolaamphiphiles. Journal of Carbohydrate Chemistry, 1998, 17, 405-416.	0.4	24
54	Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dis dissolution. International Journal of Pharmaceutics, 2014, 469, 190-196.	2.6	24

#	Article	IF	CITATIONS
55	Formation of complementary and cooperative hydrogen-bonding networks of sugar-based bolaamphiphiles in water. Chemical Communications, 1996, , 1057.	2.2	23
56	Self-assembled organic nanotubes embedding hydrophobic molecules within solid bilayer membranes. Soft Matter, 2011, 7, 85-90.	1.2	23
57	BoroxineÂNanotubes: Moistureâ€Sensitive Morphological Transformation and Guest Release. Advanced Functional Materials, 2014, 24, 603-609.	7.8	22
58	Molecular structures and hydrogen-bond networks in crystals of synthetic 1-d-galactosamide bolaamphiphiles. Carbohydrate Research, 2000, 326, 56-66.	1.1	21
59	Imaging fluorescence correlation spectroscopy studies of dye diffusion in self-assembled organic nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 16766-16774.	1.3	21
60	Preliminary communication Liquid crystalline cardanyl β-D-glucopyranosides. Liquid Crystals, 2003, 30, 747-749.	0.9	20
61	Dimension Control of Glycolipid Nanotubes by Successive Use of Vesicle Extrusion and Porous Template. Chemistry of Materials, 2006, 18, 1577-1580.	3.2	20
62	Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. International Journal of Nanomedicine, 2014, 9, 5811.	3.3	20
63	Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chemical Communications, 2015, 51, 6816-6819.	2.2	20
64	Effect of Photoinduced Size Changes on Protein Refolding and Transport Abilities of Soft Nanotubes. Chemistry - A European Journal, 2016, 22, 7198-7205.	1.7	20
65	Dynamic lightâ€scattering measurement of sieving polymer solutions for protein separation on SDS CE. Electrophoresis, 2009, 30, 3607-3612.	1.3	18
66	Control of Self-assembled Morphology and Molecular Packing of Asymmetric Glycolipids by Association/Dissociation with Poly(thiopheneboronic acid). Langmuir, 2013, 29, 13291-13298.	1.6	18
67	Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes. Physical Chemistry Chemical Physics, 2017, 19, 20040-20048.	1.3	17
68	Electric moulding of dispersed lipid nanotubes into a nanofluidic device. Scientific Reports, 2013, 3, 2165.	1.6	15
69	Effective Shortening in Length of Glycolipid Nanotubes with High Axial Ratios. Chemistry Letters, 2003, 32, 1146-1147.	0.7	14
70	Alignment of Glycolipid Nanotubes on a Planar Glass Substrate Using a Two-Step Microextrusion Technique. Journal of Nanoscience and Nanotechnology, 2006, 6, 1464-1466.	0.9	14
71	Lipid Nanotube Encapsulating Method for Two- and Three-Dimensional Transmission Electron Microscopy Analyses of Cage-Shaped Proteins. Japanese Journal of Applied Physics, 2008, 47, 394-399.	0.8	14
72	Spontaneous Nematic Alignment of a Lipid Nanotube in Aqueous Solutions. Langmuir, 2015, 31, 1150-1154.	1.6	14

#	Article	IF	CITATIONS
73	Lipid Nanotube Encapsulating Method in Low-Energy Scanning Transmission Electron Microscopy Analyses. Japanese Journal of Applied Physics, 2009, 48, 097001.	0.8	13
74	Quantitative analyses of PEGylated phospholipids adsorbed on single walled carbon nanohorns by high resolution magic angle spinning 1H NMR. Carbon, 2016, 101, 213-217.	5.4	12
75	Influences of Hydrogen Bonding-Based Stabilization of Bolaamphiphile Layers on Molecular Diffusion within Organic Nanotubes Having Inner Carboxyl Groups. Langmuir, 2020, 36, 6145-6153.	1.6	11
76	Hydrogen-Bond-Assisted Layered Assembly and Hydrocarbon-Chain Kink Defect of a Synthetic 1-Galactosamide Bolaamphiphile. Chemistry Letters, 1997, 26, 267-268.	0.7	10
77	Zn-Coordinated Lipid Nanocapsules with High Physical Stability and Water-Responsive Morphological Change. Journal of Oleo Science, 2016, 65, 1011-1016.	0.6	9
78	Preparation and Formation Process of Zn(II)-Coordinated Nanovesicles. Langmuir, 2017, 33, 14130-14138.	1.6	9
79	Diffusion Behavior of Differently Charged Molecules in Self-Assembled Organic Nanotubes Studied Using Imaging Fluorescence Correlation Spectroscopy. Langmuir, 2019, 35, 7783-7790.	1.6	9
80	Glycolipid nanotube templates for the production of hydrophilic/hydrophobic and left/right-handed helical polydiacetylene nanotubes. Chemical Communications, 2021, 57, 464-467.	2.2	8
81	Development of massive synthesis method of organic nanotube toward practical use. Synthesiology, 2009, 1, 169-176.	0.2	7
82	Molecular dynamics simulation for the crystal structure of synthetic sugar-based bolaamphiphiles. Computational Materials Science, 1999, 14, 267-276.	1.4	6
83	Effect of Glycine Position on the Inner Diameter of Supramolecular Nanotubes Consisting of Glycolipid Monolayer Membranes. Bulletin of the Chemical Society of Japan, 2021, 94, 1172-1178.	2.0	6
84	Title is missing!. Synthesiology, 2008, 1, 183-189.	0.2	5
85	Precision Polymerization and Polymers II. Noncovalent Synthesis of Supramolecular Polymer Architectures from Sugar- and Peptide-Based Bolaamphiphiles Kobunshi Ronbunshu, 1997, 54, 815-828.	0.2	4
86	Buffers to suppress sodium dodecyl sulfate adsorption to polyethylene oxide for protein separation on capillary polymer electrophoresis. Electrophoresis, 2011, 32, 448-454.	1.3	4
87	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. ChemInform, 2005, 36, no.	0.1	3
88	Non-Covalent Synthesis of Twisted Organic Fibers by Self-Assembling of Sugar-Based Bolaamphiphiles in Water. Molecular Crystals and Liquid Crystals, 1997, 295, 197-200.	0.3	2
89	Organic Nanotube with Subnanometer Inner Diameter Self-assembled from Carboxybetaine Bipolar Amphiphile and Its Stabilization Effect toward Small Molecules. Chemistry Letters, 2016, 45, 1180-1182.	0.7	2
90	Formation of Complementary and Cooperative Hydrogen-Bonding Networks of Sugar-Based Bolaamphiphiles in Water. Molecular Crystals and Liquid Crystals, 1997, 295, 201-204.	0.3	0

#	Article	IF	CITATIONS
91	Spontaneous Self-Assembly, Functionalization, and Meso-Scale Host-Guest Science of Organic Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1061, 1.	0.1	0
92	One-dimensional hollow cylinder and three-dimensional meshworks of supramolecular nanotube hydrogels for fixation of proteins. , 2010, , .		0
93	Mass-Producible Organic Nanocapsule with Water-Responsive Releasing Ability. Materials Science Forum, 2018, 916, 14-18.	0.3	0