Marta Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1136185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie - International Edition, 2007, 46, 1536-1538.	7.2	283
2	In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylate):  An In(III) Supramolecular 3D Framework with Catalytic Activity. Inorganic Chemistry, 2002, 41, 2429-2432.	1.9	220
3	Layered Rare-Earth Hydroxides: A Class of Pillared Crystalline Compounds for Intercalation Chemistry. Angewandte Chemie - International Edition, 2006, 45, 7998-8001.	7.2	203
4	Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Propertiesâ€. Chemistry of Materials, 2005, 17, 2568-2573.	3.2	189
5	An Indium Layered MOF as Recyclable Lewis Acid Catalyst. Chemistry of Materials, 2008, 20, 72-76.	3.2	175
6	Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 2013, 299, 137-145.	3.1	167
7	Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chemical Communications, 2011, 47, 1446-1448.	2.2	163
8	Single-Site Homogeneous and Heterogeneized Gold(III) Hydrogenation Catalysts:Â Mechanistic Implications. Journal of the American Chemical Society, 2006, 128, 4756-4765.	6.6	161
9	New Heterogenized Gold(I)-Heterocyclic Carbene Complexes as Reusable Catalysts in Hydrogenation and Cross-Coupling Reactions. Advanced Synthesis and Catalysis, 2006, 348, 1899-1907.	2.1	156
10	Gold Nanoparticles and Gold(III) Complexes as General and Selective Hydrosilylation Catalysts. Angewandte Chemie - International Edition, 2007, 46, 7820-7822.	7.2	156
11	Heterogenized Gold Complexes: Recoverable Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes, and Amines. ACS Catalysis, 2012, 2, 399-406.	5.5	155
12	A Rare-Earth MOF Series: Fascinating Structure, Efficient Light Emitters, and Promising Catalysts. Crystal Growth and Design, 2008, 8, 378-380.	1.4	149
13	Metalâ^'Organic Scandium Framework:Â Useful Material for Hydrogen Storage and Catalysis. Chemistry of Materials, 2005, 17, 5837-5842.	3.2	146
14	Controlling the Structure of Arenedisulfonates toward Catalytically Active Materials. Chemistry of Materials, 2009, 21, 655-661.	3.2	144
15	Tunable Catalytic Activity of Solid Solution Metal–Organic Frameworks in One-Pot Multicomponent Reactions. Journal of the American Chemical Society, 2015, 137, 6132-6135.	6.6	143
16	Conjugated Microporous Polymers Incorporating BODIPY Moieties as Light-Emitting Materials and Recyclable Visible-Light Photocatalysts. Macromolecules, 2016, 49, 1666-1673.	2.2	143
17	Rare Earth Arenedisulfonate Metalâ^'Organic Frameworks:  An Approach toward Polyhedral Diversity and Variety of Functional Compounds. Inorganic Chemistry, 2007, 46, 3475-3484.	1.9	137
18	Synthesis of Structured Porous Polymers with Acid and Basic Sites and Their Catalytic Application in Cascade-Type Reactions. Chemistry of Materials, 2013, 25, 981-988.	3.2	130

#	Article	IF	CITATIONS
19	Enantioselective hydrogenation of alkenes and imines by a gold catalyst. Chemical Communications, 2005, , 3451.	2.2	129
20	Optically active complexes of transition metals (RhI, RuII, CoII and NiII) with 2-aminocarbonylpyrrolidine ligands. Selective catalysts for hydrogenation of prochiral olefins. Journal of Organometallic Chemistry, 1992, 431, 233-246.	0.8	125
21	New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes. Journal of the Chemical Society Chemical Communications, 1991, , 1253-1255.	2.0	124
22	Gold (I) and (III) catalyze Suzuki cross-coupling and homocoupling, respectively. Journal of Catalysis, 2006, 238, 497-501.	3.1	122
23	Gold complexes as catalysts: Chemoselective hydrogenation of nitroarenes. Applied Catalysis A: General, 2009, 356, 99-102.	2.2	117
24	Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis and Catalysis, 2004, 346, 1758-1764.	2.1	113
25	Homogeneous and heterogenized Au(iii) Schiff base-complexes as selective and general catalysts for self-coupling of aryl boronic acids. Chemical Communications, 2005, , 1990-1992.	2.2	113
26	Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 2004, 224, 170-177.	3.1	112
27	Reversible Breaking and Forming of Metal–Ligand Coordination Bonds: Temperatureâ€Triggered Singleâ€Crystal to Singleâ€Crystal Transformation in a Metal–Organic Framework. Chemistry - A European Journal, 2009, 15, 4896-4905.	1.7	112
28	A Mesoporous Indium Metal–Organic Framework: Remarkable Advances in Catalytic Activity for Strecker Reaction of Ketones. Journal of the American Chemical Society, 2016, 138, 9089-9092.	6.6	111
29	Rare-earths as catalytic centres in organo-inorganic polymeric frameworks liectronic supplementary information (ESI) available: selected bond angles and hydrogen interactions in 1, 2, 3; coordination environment of the two scandium atoms in 1; coordination modes of the three crystallographically independent carboxylate groups for 2 and 3. See http://www.rsc.org/suppdata/jm/b3/b314220e/. Journal of Materials Chemistry, 2004, 14, 2683.	6.7	107
30	Cu and Au Metal–Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chemistry - A European Journal, 2010, 16, 9789-9795.	1.7	107
31	Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides. Catalysis Letters, 1996, 39, 153-156.	1.4	100
32	Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF u(BTC)â€[Pd] Catalyst for Oneâ€Pot Heteroannulation of Acetylenic Compounds. Advanced Synthesis and Catalysis, 2012, 354, 1347-1355.	2.1	100
33	Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble and heterogenized gold complexes catalysts. Applied Catalysis A: General, 2010, 375, 49-54.	2.2	97
34	Lanthanide Metal–Organic Frameworks: Searching for Efficient Solvent-Free Catalysts. Inorganic Chemistry, 2012, 51, 11349-11355.	1.9	96
35	Synthesis of p-cymene from limonene, a renewable feedstock. Applied Catalysis B: Environmental, 2008, 81, 218-224.	10.8	94
36	Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes. Applied Catalysis A: General, 2005, 291, 247-252.	2.2	92

#	Article	IF	CITATIONS
37	Pincer-type Pyridine-Based N-Heterocyclic Carbene Amine Ru(II) Complexes as Efficient Catalysts for Hydrogen Transfer Reactions. Organometallics, 2011, 30, 2180-2188.	1.1	92
38	Synthesis of Electron-Rich CNN-Pincer Complexes, with N-Heterocyclic Carbene and (S)-Proline Moieties and Application to Asymmetric Hydrogenation. Organometallics, 2010, 29, 134-141.	1.1	91
39	Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 335, 1-27.	9.5	88
40	3D scandium and yttrium arenedisulfonate MOF materials as highly thermally stable bifunctional heterogeneous catalysts. Journal of Materials Chemistry, 2009, 19, 6504.	6.7	83
41	One teflon®-like channelled nanoporous polymer with a chiral and new uninodal 4-connected net: sorption and catalytic properties. Chemical Communications, 2005, , 1291-1293.	2.2	82
42	Synthesis and characterization of new chiral Rh(I) complexes with N, N′-, and N, P-ligands. A study of anchoring on the moodified zeolites and catalytic properties of heterogenized complexes. Journal of Organometallic Chemistry, 1995, 492, 11-21.	0.8	81
43	Preparation of new chiral dioxomolybdenum complexes heterogenised on modified USY-zeolites efficient catalysts for selective epoxidation of allylic alcohols. Journal of Molecular Catalysis A, 1996, 107, 225-234.	4.8	81
44	New chiral ligands bearing two N-heterocyclic carbene moieties at a dioxolane backbone. Gold, palladium and rhodium complexes as enantioselective catalysts. Chemical Communications, 2010, 46, 3001.	2.2	80
45	From rational octahedron design to reticulation serendipity. A thermally stable rare earth polymeric disulfonate family with Cdl2-like structure, bifunctional catalysis and optical properties. Chemical Communications, 2002, , 1366-1367.	2.2	76
46	Immobilization of (NHC)NN-Pincer Complexes on Mesoporous MCM-41 Support. Organometallics, 2010, 29, 4491-4498.	1.1	75
47	From Coordinatively Weak Ability of Constituents to Very Stable Alkaline-Earth Sulfonate Metalâ^'Organic Frameworks. Crystal Growth and Design, 2011, 11, 1750-1758.	1.4	73
48	Conjugate addition of diethylzinc to enones catalyzed by homogeneous and supported chiral Ni-complexes. Cooperative effect of the support on enantioselectivity. Tetrahedron: Asymmetry, 1992, 3, 845-848.	1.8	72
49	Heterogenized Gold(I), Gold(III), and Palladium(II) Complexes for C-C Bond Reactions. Synlett, 2007, 2007, 1771-1774.	1.0	71
50	Soluble Gold and Palladium Complexes Heterogenized on MCMâ€41 Are Effective and Versatile Catalysts. European Journal of Inorganic Chemistry, 2008, 2008, 1107-1115.	1.0	70
51	Large pore bifunctional titanium–aluminosilicates: the inorganic non-enzymatic version of the epoxidase conversion of linalool to cyclic ethers. Journal of the Chemical Society Chemical Communications, 1995, , 1635-1636.	2.0	68
52	Heterogeneous Catalysis with Alkalineâ€Earth Metalâ€Based MOFs: A Green Calcium Catalyst. ChemCatChem, 2010, 2, 147-149.	1.8	68
53	New Pyridine ONNâ€Pincer Gold and Palladium Complexes: Synthesis, Characterization and Catalysis in Hydrogenation, Hydrosilylation and Cĩ£¿C Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2007, 349, 2470-2476.	2.1	67
54	Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2,) Tj ETQq0	0 0 rgBT /0	verlock 10 Tf

4

54

#	Article	IF	CITATIONS
55	Synthesis of bifunctional Au–Sn organic–inorganic catalysts for acid-free hydroamination reactions. Chemical Communications, 2008, , 6218.	2.2	62
56	A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, 2009, , 2393.	2.2	62
57	lsolated Hexanuclear Hydroxo Lanthanide Secondary Building Units in a Rare-Earth Polymeric Framework Based on <i>p</i> -Sulfonatocalix[4]arene. Crystal Growth and Design, 2010, 10, 128-134.	1.4	61
58	Mixed lanthanide succinate–sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. Journal of Materials Chemistry, 2012, 22, 1191-1198.	6.7	61
59	Chiral dioxomolybdenum(VI) and oxovanadium(V) complexes anchored on modified USY-zeolite and mesoporous MCM-41 as solid selective catalysts for oxidation of sulfides to sulfoxides or sulfones. Journal of Molecular Catalysis A, 2004, 211, 227-235.	4.8	60
60	A deprotection strategy of a BODIPY conjugated porous polymer to obtain a heterogeneous (dipyrrin)(bipyridine)ruthenium(<scp>ii</scp>) visible light photocatalyst. Journal of Materials Chemistry A, 2016, 4, 17274-17278.	5.2	58
61	Oneâ€Pot Multifunctional Catalysis with NNNâ€Pincer Zrâ€MOF: Zr Base Catalyzed Condensation with Rhâ€Catalyzed Hydrogenation. ChemCatChem, 2013, 5, 3092-3100.	1.8	57
62	Mono-functionalization of porous aromatic frameworks to use as compatible heterogeneous catalysts in one-pot cascade reactions. Applied Catalysis A: General, 2014, 469, 206-212.	2.2	57
63	Post-functionalized iridium–Zr-MOF as a promising recyclable catalyst for the hydrogenation of aromatics. Green Chemistry, 2014, 16, 3522-3527.	4.6	57
64	Palladium-heterogenized porous polyimide materials as effective and recyclable catalysts for reactions in water. Green Chemistry, 2015, 17, 466-473.	4.6	56
65	A Germanium Zeotype Containing Intratunnel Transition Metal Complexes. Angewandte Chemie - International Edition, 1999, 38, 2436-2439.	7.2	54
66	Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 2011, 13, 2471.	4.6	54
67	Design of a Bifunctional Ir–Zr Based Metal–Organic Framework Heterogeneous Catalyst for the Nâ€Alkylation of Amines with Alcohols. ChemCatChem, 2014, 6, 1794-1800.	1.8	54
68	First high thermally stable organo–inorganic 3D polymer scandium derivative as a heterogeneous Lewis acid catalyst. Chemical Communications, 2003, , 346-347.	2.2	53
69	Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 2013, 15, 9562.	1.3	52
70	2D and 3D Supramolecular Structures via Hydrogen Bonds and ï€-Stacking Interactions in Arylsulfonates of Nickel and Cobalt. Inorganic Chemistry, 2006, 45, 9680-9687.	1.9	50
71	Chiral Germanium Zeotype with Interconnected 8-, 11-, and 11-Ring Channels. Catalytic Properties. Chemistry of Materials, 2004, 16, 594-599.	3.2	48
72	From homogeneous to heterogeneous catalysis: zeolite supported metal complexes with C2-multidentate nitrogen ligands. Application as catalysts for olefin hydrogenation and cyclopropanation reactions. Journal of Organometallic Chemistry, 2002, 655, 134-145.	0.8	46

#	Article	IF	CITATIONS
73	Efficient cycloaddition of CO2 to epoxides using novel heterogeneous organocatalysts based on tetramethylguanidine-functionalized porous polyphenylenes. Journal of CO2 Utilization, 2018, 25, 170-179.	3.3	46
74	Insight into the Correlation between Net Topology and Ligand Coordination Mode in New Lanthanide MOFs Heterogeneous Catalysts: A Theoretical and Experimental Approach. Crystal Growth and Design, 2012, 12, 5535-5545.	1.4	45
75	Postfunctionalized Porous Polymeric Aromatic Frameworks with an Organocatalyst and a Transition Metal Catalyst for Tandem Condensation–Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 1078-1084.	3.2	45
76	Synthesis of bimetallic Zr(Ti)-naphthalendicarboxylate MOFs and their properties as Lewis acid catalysis. RSC Advances, 2016, 6, 106790-106797.	1.7	44
77	Photoluminescence, Unconventionalâ€Range Temperature Sensing, and Efficient Catalytic Activities of Lanthanide Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 1577-1588.	1.0	44
78	New Mn(II) and Cu(II) chiral C2-multidentate complexes immobilised in zeolites (USY, MCM41). Journal of Molecular Catalysis A, 2003, 194, 137-152.	4.8	43
79	Thermal Response, Catalytic Activity, and Color Change of the First Hybrid Vanadate Containing Bpe Guest Molecules. Inorganic Chemistry, 2013, 52, 2615-2626.	1.9	42
80	H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2013, 135, 5782-5792.	6.6	42
81	Heterogenised catalysts on zeolites. Synthesis of new chiral Rh(I) complexes with (2S,4R)-trans-4-RCOO-2-(t-butylaminocarbonyl) pyrrolidines and (2S,4S)-cis-4-RCONH-2-(t-butylaminocarbonyl) pyrrolidines. Heterogenisation on silica and a USY-zeolite and study of the role of support on their catalytic profile in hydrogenation of olefins.	0.8	38
82	Ge8O16[(OH)â^'(MeNH3)+(MeNH2)]: one OH-templated germanium zeotype. Chemical Communications, 2000, , 2145-2146.	2.2	38
83	Approaches to the synthesis of heterogenised metalloporphyrins. Journal of Molecular Catalysis A, 2006, 246, 109-117.	4.8	38
84	Heterogeneous catalysts based on supported Rh–NHC complexes: synthesis of high molecular weight poly(silyl ether)s by catalytic hydrosilylation. Catalysis Science and Technology, 2014, 4, 62-70.	2.1	37
85	MCM-41 Heterogenized Chiral Amines as Base Catalysts for Enantioselective Michael Reaction. Catalysis Letters, 2002, 82, 237-242.	1.4	36
86	Chiral NHC omplexes with Dioxolane Backbone Heterogenized on MCMâ€41. Catalytic Activity. ChemCatChem, 2011, 3, 1320-1328.	1.8	35
87	First Preâ€Functionalised Polymeric Aromatic Framework from Mononitrotetrakis(iodophenyl)methane and its Applications. Chemistry - A European Journal, 2014, 20, 5111-5120.	1.7	35
88	Efficient Rare-Earth-Based Coordination Polymers as Green Photocatalysts for the Synthesis of Imines at Room Temperature. Inorganic Chemistry, 2018, 57, 6883-6892.	1.9	35
89	New rhodium complexes anchored on silica and modified Y-zeolite as efficient catalysts for hydrogenation of olefins. Journal of Molecular Catalysis, 1991, 70, 369-379.	1.2	34
90	Novel efficient catalysts based on imine-linked mesoporous polymers for hydrogenation and cyclopropanation reactions. Journal of Materials Chemistry, 2012, 22, 24637.	6.7	34

#	Article	IF	CITATIONS
91	Synchronizing Substrate Activation Rates in Multicomponent Reactions with Metal–Organic Framework Catalysts. Chemistry - A European Journal, 2016, 22, 6654-6665.	1.7	34
92	Hydrogenation of aromatics under mild conditions on transition metal complexes in zeolites. A cooperative effect of molecular sieves. Catalysis Letters, 1995, 32, 313-318.	1.4	33
93	Synthesis, Structure, and Catalytic Properties of Rare-Earth Ternary Sulfates. Chemistry of Materials, 2005, 17, 2701-2706.	3.2	33
94	Amine templated open-framework vanadium(iii) phosphites with catalytic properties. Dalton Transactions, 2013, 42, 4500.	1.6	33
95	Homogeneous and encapsulated within the cavities of zeolite Y chiral manganese and copper complexes with C2-multidentate ligands as catalysts for the selective oxidation of sulphides to sulfoxides or sulfones. Journal of Molecular Catalysis A, 2002, 178, 253-266.	4.8	32
96	Fluorine-Phenanthroimidazole Porous Organic Polymer: Efficient Microwave Synthesis and Photocatalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 3459-3465.	4.0	32
97	Alternation of [Ge5O11H]â^' Inorganic Sheets and Dabconium Cations in a Novel Layered Germanate: Catalytic Properties. Chemistry of Materials, 2002, 14, 677-681.	3.2	31
98	Thermodynamic and Kinetic Control on the Formation of Two Novel Metal-Organic Frameworks Based on the Er(III) Ion and the Asymmetric Dimethylsuccinate Ligand. Inorganic Chemistry, 2010, 49, 5063-5071.	1.9	30
99	Easy Synthesis of New Chiral Tridentate Schiff Bases and Their Use as [N,N,O] Ligands for Ni and Pd Complexesâ^ Catalytic Behaviour versus Hydrogenation Reactions. European Journal of Inorganic Chemistry, 2004, 2004, 1955-1962.	1.0	29
100	Mechanistic analogies and differences between gold- and palladium-supported Schiff base complexes as hydrogenation catalysts: A combined kinetic and DFT study. Journal of Catalysis, 2008, 254, 226-237.	3.1	29
101	Multisite solid (NHC)NN-Ru-catalysts for cascade reactions: Synthesis of secondary amines from nitro compounds. Journal of Catalysis, 2012, 291, 110-116.	3.1	29
102	Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 2015, 5, 7058-7065.	1.7	29
103	Understanding Charge Transfer Mechanism on Effective Truxene-Based Porous Polymers–TiO ₂ Hybrid Photocatalysts for Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 4411-4420.	2.5	29
104	Rhodium complexes with phosphine and diazabutadiene ligands. Their properties as hydrogenation catalysts. Molecular structure of RhCl(COD)P(p-C6H4F)3. Inorganica Chimica Acta, 1987, 127, 215-221.	1.2	28
105	Rh and Ir complexes containing multidentate, C2-symmetry ligands. Structural and catalytic properties in asymmetric hydrogenation. Journal of Organometallic Chemistry, 2000, 601, 284-292.	0.8	28
106	Homogeneous versus Supported ONN Pincerâ€Type Gold and Palladium Complexes: Catalytic Activity. ChemSusChem, 2009, 2, 650-657.	3.6	27
107	Two-Dimensional Hybrid Germanium Zeotype Formed by Selective Coordination of the <i>trans</i> -1,2-Diaminocyclohexane Isomer to the Ge Atom: Heterogeneous Acidâ^'Base Bifunctional Catalyst. Inorganic Chemistry, 2008, 47, 6791-6795.	1.9	26
108	Ln-MOF Pseudo-Merohedral Twinned Crystalline Family as Solvent-Free Heterogeneous Catalysts. Crystal Growth and Design, 2014, 14, 2516-2521.	1.4	26

#	Article	IF	CITATIONS
109	Decontaminant agents in the catalytic cracking of petroleum. X-ray crystal structure of bismuth-tri-diethyl phosphoro dithioate, Bi[(C2H5O)2PS2]3. Polyhedron, 1989, 8, 483-489.	1.0	25
110	New catalytically active neodymium sulfate. Journal of Materials Chemistry, 2002, 12, 3073-3077.	6.7	25
111	Porous aromatic frameworks (PAFs) as efficient supports for N-heterocyclic carbene catalysts. Catalysis Science and Technology, 2016, 6, 6037-6045.	2.1	25
112	Truxene-based porous polymers: from synthesis to catalytic activity. Polymer Chemistry, 2018, 9, 4585-4595.	1.9	25
113	Metal Catalysis with Knitting Aryl Polymers: Design, Catalytic Applications, and Future Trends. Chemistry of Materials, 2021, 33, 6616-6639.	3.2	25
114	Title is missing!. Chemical Communications, 2001, , 2548-2549.	2.2	24
115	Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions. Materials, 2017, 10, 759.	1.3	24
116	Effect of porous organic polymers in gas separation properties of polycarbonate based mixed matrix membranes. Journal of Membrane Science, 2021, 619, 118795.	4.1	24
117	A Diamine Copper(I) Complex Stabilized in Situ within the Ferrierite Framework. Catalytic Properties. Chemistry of Materials, 2001, 13, 1364-1368.	3.2	23
118	Insight into Lewis Acid Catalysis with Alkalineâ€Earth MOFs: The Role of Polyhedral Symmetry Distortions. Chemistry - A European Journal, 2013, 19, 15572-15582.	1.7	23
119	Bromine pre-functionalized porous polyphenylenes: New platforms for one-step grafting and applications in reversible CO2 capture. Journal of CO2 Utilization, 2019, 30, 183-192.	3.3	23
120	Iron Phthalocyanine-Knitted Polymers as Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 32681-32688.	4.0	23
121	Chiral Metal Transition Complexes in Zeolites: Enantioselective Hydrogenation of Dehydrophenylalanine Derivatives. Studies in Surface Science and Catalysis, 1993, , 2293-2296.	1.5	22
122	Heterogeneous catalytic properties of unprecedented μ-O-[FeTCPP] ₂ dimers (H ₂ TCPP = meso-tetra(4-carboxyphenyl)porphyrin): an unusual superhyperfine EPR structure. Dalton Transactions, 2015, 44, 213-222.	1.6	22
123	Synthesis of polyesters by an efficient heterogeneous phosphazene (P1)-Porous Polymeric Aromatic Framework catalyzed-Ring Opening Polymerization of lactones. European Polymer Journal, 2017, 95, 775-784.	2.6	22
124	Exploring physical and chemical properties in new multifunctional indium-, bismuth-, and zinc-based 1D and 2D coordination polymers. Dalton Transactions, 2018, 47, 1808-1818.	1.6	22
125	New poly(ionic liquid)s based on poly(azomethine-pyridinium) salts and its use as heterogeneous catalysts for CO2 conversion. European Polymer Journal, 2019, 110, 107-113.	2.6	22
126	Cyclopropanation reactions catalysed by copper and rhodium complexes homogeneous and heterogenised on a modified USY-zeolite. Influence of the catalyst on the catalytic profile. Journal of Molecular Catalysis A, 1999, 144, 337-346.	4.8	21

#	Article	IF	CITATIONS
127	New chiral diphosphinites: synthesis of Rh complexes. Heterogenisation on zeolites. Journal of Organometallic Chemistry, 1999, 588, 186-194.	0.8	21
128	Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. ChemCatChem, 2014, 6, 3426-3433.	1.8	21
129	Effect of the Linkage Position on the Conjugation Length of Truxene-Based Porous Polymers: Implications for Their Sensing Performance of Nitroaromatics. Chemistry of Materials, 2019, 31, 6971-6978.	3.2	21
130	Synthesis and characterisation of chiral Cu(I) complexes with substituted-pyrrolidine-ligands bearing a triethoxysilyl group and preparation of heterogenised catalysts on USY-zeolites. Inorganica Chimica Acta, 1996, 244, 79-85.	1.2	20
131	Synthesis of Rh(I) and Ir(I) complexes with chiral C2-multitopic ligands. Journal of Organometallic Chemistry, 2001, 634, 25-33.	0.8	20
132	Synthesis and characterisation of chiral Cu(I) complexes of substituted pyrrolidine ligands. Efficient catalysts for cyclopropanation reactions. Inorganica Chimica Acta, 1996, 244, 239-245.	1.2	19
133	Heterogenised Rh(I), Ir(I) metal complexes with chiral triaza donor ligands: a cooperative effect between support and complex. Inorganica Chimica Acta, 2004, 357, 3071-3078.	1.2	19
134	Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxidesIsolation of a stable supported Mn(V)O complex, responsible of the catalytic activity. Journal of Molecular Catalysis A, 2004, 221, 201-208.	4.8	19
135	Supramolecular structures via hydrogen bonds and π-stacking interactions in novel anthraquinonedisulfonates of zinc, nickel, cobalt, copper and manganese. Inorganica Chimica Acta, 2012, 382, 119-126.	1.2	19
136	Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer. Molecules, 2020, 25, 4598.	1.7	19
137	High operational stability in peroxidase-catalyzed non-aqueous sulfoxidations by encapsulation within sol–gel glasses. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 107-111.	1.8	18
138	Synthesis and characterization of new cationic hydride complexes of rhodium(III). Inorganica Chimica Acta, 1986, 119, 7-12.	1.2	17
139	Fast to Ultrafast Dynamics of Palladium Phthalocyanine Covalently Bonded to MCM-41 Mesoporous Material. Journal of Physical Chemistry C, 2009, 113, 19199-19207.	1.5	17
140	Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Applied Catalysis A: General, 2021, 623, 118287.	2.2	17
141	Solvothermal synthesis and structural relations among three anionic aluminophosphates; catalytic behaviour. Journal of Materials Chemistry, 2004, 14, 845-850.	6.7	16
142	Catalytic Behavior of Rare-Earth Sulfates:Â Applications in Organic Hydrogenation and Oxidation Reactions. Chemistry of Materials, 2004, 16, 4144-4149.	3.2	15
143	Microporous vanadyl-arsenate with the template incorporated exhibiting sorption and catalytic properties. Chemical Communications, 2008, , 4738.	2.2	15
144	[NaCu(2,4-HPdc)(2,4-Pdc)] Mixed Metal-Organic Framework as a Heterogeneous Catalyst. European Journal of Inorganic Chemistry, 2015, 2015, 4699-4707.	1.0	15

#	Article	IF	CITATIONS
145	Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications as recyclable catalysts. Journal of Catalysis, 2019, 377, 609-618.	3.1	15
146	Copper complexes with multidentate ligands derived from l-proline. X-ray crystal structure of {[Cu(N,N′-bis[(S)-prolyl]ethylenediamine)]ClO4}2·(MeCN)2. Inorganica Chimica Acta, 2000, 306, 116-121.	1.2	14
147	A step forward in solvent knitting strategies: ruthenium and gold phosphine complex polymerization results in effective heterogenized catalysts. Catalysis Science and Technology, 2019, 9, 4552-4560.	2.1	14
148	Nickel passivation on fluidised cracking catalysts with different antimony complexes. Applied Catalysis A: General, 1992, 85, 61-71.	2.2	13
149	Copper and manganese complexes with C2-multitopic ligands. X-ray crystal structure of [Cu(N,N′-bis[(S)-prolyl]phenylenediamine)H2O]. Catalytic properties. Inorganica Chimica Acta, 2002, 333, 83-92.	1.2	13
150	M(C6H16N3)2(VO3)4 as heterogeneous catalysts. Study of three new hybrid vanadates of cobalt(ii), nickel(ii) and copper(ii) with 1-(2-aminoethyl)piperazonium. Dalton Transactions, 2011, 40, 12690.	1.6	13
151	Reactions of rhodium dihydride complexes [RhH2(R-DAB)-(PR′3)2]+ with the acetylenes CH3OOCCî—¼CCOOCH3 and HCî—¼CC6H5. Crystal structure of [(CO2CH3)-(C6H11Nî—»CHCHî—»NC6H11) H2O]ClO4. Journal of Organometallic Chemistry, 1980, 338, 89-102.	[P 0:1 83 (C6	5H 5)2}
152	Molecular structure and reactions of [RhH2(C6H5NCHCHNC6H5)(PPh3)2]PF6. Journal of Organometallic Chemistry, 1986, 317, 363-372.	0.8	12
153	Anionic and neutral 2D indium metal–organic frameworks as catalysts for the Ugi one-pot multicomponent reaction. Dalton Transactions, 2019, 48, 2988-2995.	1.6	12
154	New molybdenum(0)-fullerene complexes resulting from interaction of C60 with tetracarbonyldiacetyldihydrazonemolybdenum(0) and dicarbonyldiacetyldihydrazonebis(triphenylphosphine)molybdenum(0). Inorganica Chimica Acta, 1996, 248, 67-72.	1.2	11
155	Regiospecific hydrosilylation of styrene by rhodium complexes heterogenised on modified USY-zeolites. Studies in Surface Science and Catalysis, 1997, , 501-507.	1.5	11
156	From homogeneous to heterogeneous catalysis: Supported Pd(II) metal complexes with chiral triaza donor ligands. Catalysis Today, 2005, 107-108, 362-370.	2.2	11
157	A cooperative effect between support and the heterogenised metalloporphyrins on electrocatalytic oxygen reduction. Catalysis Letters, 2005, 101, 99-103.	1.4	11
158	Catalytic performance of the high and low temperature polymorphs of (C6N2H16)0.5[(VO)(HAsO4)F]: structural, thermal, spectroscopic and magnetic studies. Dalton Transactions, 2010, 39, 834-846.	1.6	11
159	Effective Approach toward Conjugated Porous Organic Frameworks Based on Phenanthrene Building Blocks: Metal-Free Heterogeneous Photocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 15108-15114.	4.0	11
160	Synthesis, characterization and structure of cationic hydrides of rhodium(III). Part II. Crystal structure of dihydride(1,4-biscyclohexyl-diaza-1,3-butadiene)-bis(4-fluor-tristriphenylphosphine)rhodium(III) perchlorate. Inorganica Chimica Acta, 1988, 145, 91-98.	1.2	10
161	New mono- and polyazafulleroids C60(NR)n (n=1,2,4,6) derived from a chiral azide containing N- and O-donor groups, and reactivity with [RhCl(CO)2]2. Journal of Organometallic Chemistry, 2000, 599, 8-17.	0.8	10
162	Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxides. Journal of Molecular Catalysis A, 2004, 221, 201-208.	4.8	10

#	ARTICLE	IF	CITATIONS
163	Phenyl Extended Naphthaleneâ€Based Covalent Triazine Frameworks as Versatile Metalâ€Free Heterogeneous Photocatalysts. Solar Rrl, 2022, 6, .	3.1	10
164	Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 2011, 40, 9589.	1.6	9
165	Building a Green, Robust, and Efficient Bi-MOF Heterogeneous Catalyst for the Strecker Reaction of Ketones. Inorganic Chemistry, 2022, 61, 7523-7529.	1.9	9
166	Accessible microwave synthetized conjugated poly(azomethineâ€pyridine) network and its metal complexes for C <scp>O</scp> ₂ conversion. Journal of Polymer Science Part A, 2018, 56, 1946-1952.	2.5	8
167	Reactions of substituted carbonyl complexes of molybdenum(0), Mo(CO)4(DAB) and Mo(CO)2(PPh3)2(DAB), with HgX2 (X = Cl, I, SCN) and SnCl4 (DAB = 1,4-diazabutadiene). Journal of Organometallic Chemistry, 1983, 256, 75-88.	0.8	7
168	Efficient and Reusable Metal Heterogeneous Catalysts for Conversion of CO2 Prepared from a Microwave Synthetized Porous Polyiminopyridine. ChemistrySelect, 2017, 2, 9516-9522.	0.7	6
169	Readily Available Highly Active [Ti]-Adamantyl-BINOL Catalysts for the Enantioselective Alkylation of Aldehydes. ACS Omega, 2018, 3, 1197-1200.	1.6	6
170	Study of the versatility of CuBTC@IL-derived materials for heterogeneous catalysis. CrystEngComm, 2020, 22, 2904-2913.	1.3	6
171	Porous aromatic frameworks containing binaphthyl-dihydroazepine units (cBAPAFs) as catalytic supports for asymmetric reactions. Journal of Catalysis, 2022, 413, 434-442.	3.1	6
172	Reactions of substituted carbonyl complexes of molybdenum(0), Mo(CO)4(DAB) and Mo(CO)2(PPh3)2(DAB) with Cl2, Br2 and I2 (DAB = 1,4-diazabutadiene). Journal of Organometallic Chemistry, 1984, 263, 193-200.	0.8	5
173	Reactions of the rhodium dihydride complex [RhH2(Hex-DAB)(PPh3)2][PF6] (cHex-DAB =) Tj ETQq1 1 0.784314 [RhH2(cHex-DAB)(PPh3)2][Co(CO)4]. Journal of Organometallic Chemistry, 1989, 366, 391-401.	rgBT /Ove 0.8	rlock 10 Tf 5 5
174	Vanadyl arsenates as catalysts for selective oxidation of organic sulfides and alkenes. Journal of Molecular Catalysis A, 2011, 335, 176-182.	4.8	5
175	Double role of metalloporphyrins in catalytic bioinspired supramolecular metal–organic frameworks (SMOFs). IUCrJ, 2018, 5, 559-568.	1.0	4
176	Copper(I) complexes with the hexaazafulleroid C60(NR)6, derived from (2S,4S)-4-azido-1-benzyloxycarbonyl-2-(t-butylaminocarbonyl)pyrrolidine as multitopic ligand. Catalytic properties in oxidation of sulfides. Journal of Organometallic Chemistry, 2001, 627, 159-166.	0.8	3
177	Polyiminopyridines based networks as supports to heterogenize iron(II) complexes. Application as efficient and selective ecofriendly catalysts ChemistrySelect, 2016, 1, 396-402.	0.7	2
178	Mixed Matrix Membranes Containing a Biphenyl-Based Knitting Aryl Polymer and Gas Separation Performance. Membranes, 2021, 11, 914.	1.4	2
179	Synthesis of polydiphenylphosphite derivatives of [60]fullerene and their reactions with metal complexes. Journal of Organometallic Chemistry, 1997, 549, 213-220.	0.8	1

Reactions of fullerenols C60(OH)x (x=12, 18) with trialkoxysilanes (RO)3Si(CH2)3X (R=Me, X=Cl; R=Et,) Tj ETQq0 $\underset{0.8}{0.9}$ rgBT /Qverlock 10 $\underset{0.8}{0.8}$ rgBT /Qverlock 10 $\underset{0.8}{0.8}$

#	Article	IF	CITATIONS
181	Pluronic-assisted hydrothermal synthesis of microporous polyimides. Application as supports for heterogenized transition metal catalysts. Microporous and Mesoporous Materials, 2017, 239, 287-295.	2.2	1
182	Chiral Dioxo-Molybdenum Complexes Anchored to Modified Usy-Zeolites. Application to Selective Epoxidation of Olefins. , 1995, , 179-189.		1
183	Chiral Germanium Zeotype with Interconnected 8-, 11-, and 11-Ring Channels. Catalytic Properties ChemInform, 2004, 35, no.	0.1	0
184	Catalytic Behavior of Rare-Earth Sulfates: Applications in Organic Hydrogenation and Oxidation Reactions ChemInform, 2004, 35, no.	0.1	0
185	Synthesis, Structure, and Catalytic Properties of Rare-Earth Ternary Sulfates ChemInform, 2005, 36, no.	0.1	0
186	Homogeneous and Heterogenized Au(III) Schiff Base-Complexes as Selective and General Catalysts for Self-Coupling of Aryl Boronic Acids ChemInform, 2005, 36, no.	0.1	0
187	Enantioselective Hydrogenation of Alkenes and Imines by a Gold Catalyst ChemInform, 2005, 36, no.	0.1	О