Jack Gauldie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11361085/publications.pdf

Version: 2024-02-01

96 papers

9,841 citations

41258 49 h-index 88 g-index

96 all docs 96 docs citations

96 times ranked 11759 citing authors

#	Article	IF	Citations
1	The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. International Journal of Biochemistry and Cell Biology, 2008, 40, 362-382.	1.2	781
2	Transient expression of IL- $1\hat{l}^2$ induces acute lung injury and chronic repair leading to pulmonary fibrosis. Journal of Clinical Investigation, 2001, 107, 1529-1536.	3.9	655
3	Circulating Fibrocytes Are an Indicator of Poor Prognosis in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 588-594.	2.5	486
4	Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 537-546.	2.5	425
5	Ly6C ^{hi} Monocytes Direct Alternatively Activated Profibrotic Macrophage Regulation of Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 569-581.	2.5	383
6	Smad3 Null Mice Develop Airspace Enlargement and Are Resistant to TGF- \hat{l}^2 -Mediated Pulmonary Fibrosis. Journal of Immunology, 2004, 173, 2099-2108.	0.4	349
7	Metastatic Growth from Dormant Cells Induced by a Col-l–Enriched Fibrotic Environment. Cancer Research, 2010, 70, 5706-5716.	0.4	326
8	Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 9-13.	1.4	268
9	Transfer of Tumor Necrosis Factor- $\hat{l}\pm$ to Rat Lung Induces Severe Pulmonary Inflammation and Patchy Interstitial Fibrogenesis with Induction of Transforming Growth Factor- \hat{l}^21 and Myofibroblasts. American Journal of Pathology, 1998, 153, 825-832.	1.9	256
10	Progressive Transforming Growth Factor $\hat{l}^21\hat{a}$ induced Lung Fibrosis Is Blocked by an Orally Active ALK5 Kinase Inhibitor. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 889-898.	2.5	237
11	TGF- \hat{l}^2 and <i>Smad3</i> Signaling Link Inflammation to Chronic Fibrogenesis. Journal of Immunology, 2005, 175, 5390-5395.	0.4	227
12	Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1-15.	1.4	199
13	VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. Journal of Clinical Investigation, 2009, 119, 1298-1311.	3.9	184
14	Gene Transfer of Transforming Growth Factor- \hat{l}^21 to the Rat Peritoneum. Journal of the American Society of Nephrology: JASN, 2001, 12, 2029-2039.	3.0	184
15			

#	Article	IF	CITATIONS
19	Differences in the Fibrogenic Response after Transfer of Active Transforming Growth Factor-⟨b⟩β⟨/b⟩1 Gene to Lungs of "Fibrosis-prone―and "Fibrosis-resistant―Mouse Strains. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 141-150.	1.4	161
20	Transfer of the Active Form of Transforming Growth Factor- \hat{l}^21 Gene to Newborn Rat Lung Induces Changes Consistent with Bronchopulmonary Dysplasia. American Journal of Pathology, 2003, 163, 2575-2584.	1.9	159
21	Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8–mediated activation of TGF-β. Journal of Clinical Investigation, 2011, 121, 2863-2875.	3.9	157
22	Progressive pulmonary fibrosis is mediated by TGF- \hat{l}^2 isoform 1 but not TGF- \hat{l}^2 3. International Journal of Biochemistry and Cell Biology, 2008, 40, 484-495.	1.2	148
23	Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. Journal of General Virology, 2006, 87, 641-650.	1.3	145
24	Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. Journal of Leukocyte Biology, 1997, 61, 695-702.	1.5	130
25	TGF- \hat{l}^21 gene transfer to the mouse colon leads to intestinal fibrosis. American Journal of Physiology - Renal Physiology, 2005, 289, G116-G128.	1.6	129
26	Inflammatory Cytokines, Angiogenesis, and Fibrosis in the Rat Peritoneum. American Journal of Pathology, 2002, 160, 2285-2294.	1.9	123
27	Adenoviral Gene Transfer of Connective Tissue Growth Factor in the Lung Induces Transient Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 770-778.	2.5	121
28	Overexpression of Tumor Necrosis Factor-α Diminishes Pulmonary Fibrosis Induced by Bleomycin or Transforming Growth Factor-β. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 669-676.	1.4	119
29	TGF- \hat{l}^21 Induces Progressive Pleural Scarring and Subpleural Fibrosis. Journal of Immunology, 2007, 179, 6043-6051.	0.4	114
30	Antiangiogenic and Antifibrotic Gene Therapy in a Chronic Infusion Model of Peritoneal Dialysis in Rats. Journal of the American Society of Nephrology: JASN, 2002, 13, 721-728.	3.0	112
31	Smad3 Signaling Involved in Pulmonary Fibrosis and Emphysema. Proceedings of the American Thoracic Society, 2006, 3, 696-702.	3.5	111
32	Steroid Inhibition of Cytokine-Mediated Vasodilation After Warm Heart Surgery. Circulation, 1995, 92, 347-353.	1.6	110
33	A new direction in the pathogenesis of idiopathic pulmonary fibrosis?. Respiratory Research, 2002, 3, 1.	1.4	104
34	Granulocyte/Macrophage Colony-stimulating Factor (GM-CSF) Gene Expression by Eosinophils in Nasal Polyposis. American Journal of Respiratory Cell and Molecular Biology, 1991, 5, 505-510.	1.4	102
35	Inflammatory Mechanisms Are a Minor Component of the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1205-1206.	2.5	99
36	Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. ELife, 2018, 7, .	2.8	99

#	Article	IF	Citations
37	Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB Journal, 2013, 27, 1549-1560.	0.2	95
38	Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. Journal of General Virology, 2008, 89, 2136-2146.	1.3	87
39	A role for CD4+ T cells in the pathogenesis of skin fibrosis in tight skin mice. European Journal of Immunology, 1994, 24, 1463-1466.	1.6	82
40	The importance of interventional timing in the bleomycin model of pulmonary fibrosis. European Respiratory Journal, 2020, 55, 1901105.	3.1	82
41	Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. Journal of Pathology, 2016, 240, 197-210.	2.1	81
42	Targeting Genes for Treatment in Idiopathic Pulmonary Fibrosis: Challenges and Opportunities, Promises and Pitfalls. Proceedings of the American Thoracic Society, 2006, 3, 389-393.	3.5	76
43	Oxidative stress contributes to the induction and persistence of TGF- \hat{l}^21 induced pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 2011, 43, 1122-1133.	1.2	71
44	Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax, 2015, 70, 636-646.	2.7	71
45	Mechanical stress-induced mast cell degranulation activates TGF- \hat{l}^21 signalling pathway in pulmonary fibrosis. Thorax, 2019, 74, 455-465.	2.7	63
46	Lens-Specific Expression of TGF- \hat{l}^2 Induces Anterior Subcapsular Cataract Formation in the Absence of Smad3., 2006, 47, 3450.		62
47	Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. Journal of General Virology, 2005, 86, 211-215.	1.3	60
48	Transient Overexpression of Gremlin Results in Epithelial Activation and Reversible Fibrosis in Rat Lungs. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 870-878.	1.4	60
49	Comparison between conventional and "clinical" assessment of experimental lung fibrosis. Journal of Translational Medicine, 2008, 6, 16.	1.8	59
50	The small heatâ€shock protein <i>α</i> <scp>B</scp> â€crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis. Journal of Pathology, 2014, 232, 458-472.	2.1	52
51	Surfactant dysfunction during overexpression of TGF- \hat{l}^21 precedes profibrotic lung remodeling in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1260-L1271.	1.3	49
52	FPR-1 is an important regulator of neutrophil recruitment and a tissue-specific driver of pulmonary fibrosis. JCI Insight, 2020, 5, .	2.3	48
53	Macitentan reduces progression of TGF-β1-induced pulmonary fibrosis andÂpulmonary hypertension. European Respiratory Journal, 2018, 52, 1701857.	3.1	46
54	Fibrocytes and fibroblasts—Where are we now. International Journal of Biochemistry and Cell Biology, 2019, 116, 105595.	1.2	46

#	Article	lF	Citations
55	Lysyl Oxidase–Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1–induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 461-470.	1.4	44
56	A novel profibrotic mechanism mediated by <scp>TGFβ</scp> â€stimulated collagen prolyl hydroxylase expression in fibrotic lung mesenchymal cells. Journal of Pathology, 2015, 236, 384-394.	2.1	40
57	Human Upper Airway Structural Cell-derived Cytokines Support Human Peripheral Blood Monocyte Survival: A Potential Mechanism for Monocyte/Macrophage Accumulation in the Tissue. American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 212-218.	1.4	39
58	Regulation of Rat Liver Acute Phase Genes by Interleukinâ€6 and Production of Hepatocyte Stimulating Factors by Rat Hepatoma Cells ^a . Annals of the New York Academy of Sciences, 1989, 557, 317-331.	1.8	39
59	Lung fibroblast clones from normal and fibrotic subjects differ in hyaluronan and decorin production and rate of proliferation. International Journal of Biochemistry and Cell Biology, 2004, 36, 1573-1584.	1.2	36
60	Modulation of pulmonary fibrosis by IL-13R $\hat{1}\pm2$. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L710-L718.	1.3	35
61	Amplification of TGF1 ² Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis. PLoS ONE, 2016, 11, e0158047.	1.1	34
62	Animal models of pulmonary fibrosis: how far from effective reality?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L151-L151.	1.3	33
63	Alveolar Macrophage/Peripheral Blood Monocyte-Derived Factors Modulate Proliferation of Primary Lines of Human Lung Fibroblasts. Journal of Leukocyte Biology, 1987, 42, 51-60.	1.5	32
64	Molecular mechanisms of MMP9 overexpression and its role in emphysema pathogenesis of Smad3-deficient mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L89-L96.	1.3	31
65	Adenovirus Vector Expressing Mouse Oncostatin M Induces Acute-Phase Proteins and TIMP-1 ExpressionIn Vivoin Mice. Journal of Interferon and Cytokine Research, 1999, 19, 1195-1205.	0.5	30
66	Spatial-specific TGF- \hat{l}^21 adenoviral expression determines morphogenetic phenotypes in embryonic mouse lung. European Journal of Cell Biology, 1999, 78, 715-725.	1.6	30
67	Surfactant dysfunction and alveolar collapse are linked with fibrotic septal wall remodeling in the TGF- \hat{l}^21 -induced mouse model of pulmonary fibrosis. Laboratory Investigation, 2019, 99, 830-852.	1.7	30
68	IL-12 gene transfer alters gut physiology and host immunity in nematode-infected mice. American Journal of Physiology - Renal Physiology, 2001, 281, G102-G110.	1.6	28
69	Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L391-L401.	1.3	28
70	Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Letters, 2004, 568, 49-54.	1.3	27
71	Type 1 interferon gene transfer enhances host defense against pulmonary Streptococcus pneumoniae infection via activating innate leukocytes. Molecular Therapy - Methods and Clinical Development, 2014, 1, 5.	1.8	26
72	Models of pulmonary fibrosis. Drug Discovery Today: Disease Models, 2006, 3, 243-249.	1.2	24

#	Article	lF	CITATIONS
73	The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis contributes to regulation of pulmonary fibrosis. Thorax, 2019, 74, 947-957.	2.7	24
74	Adenovirus-Vector-Mediated Cytokine Gene Transfer to Lung Tissue. Annals of the New York Academy of Sciences, 1996, 796, 235-244.	1.8	18
75	Fibrocytes in chronic lung disease – Facts and controversies. Pulmonary Pharmacology and Therapeutics, 2012, 25, 263-267.	1.1	17
76	New treatment and markers of prognosis for idiopathic pulmonary fibrosis: lessons learned from translational research. Expert Review of Respiratory Medicine, 2013, 7, 465-478.	1.0	14
77	The transforming growth factor-beta (TGF-β) family and pulmonary fibrosis. Drug Discovery Today Disease Mechanisms, 2006, 3, 99-103.	0.8	13
78	Adenovirus Vectors for Cytokine Gene Expression. Annals of the New York Academy of Sciences, 1995, 762, 282-293.	1.8	12
79	Modulation of the Anchorage-Independent Phenotype of Human Lung Fibroblasts Obtained from Fibrotic Tissue Following Culture with Retinoid and Corticosteroid. Experimental Lung Research, 1996, 22, 231-244.	0.5	11
80	Transient Gene Transfer and Expression in the Lung. Chest, 1997, 111, 89S-94S.	0.4	10
81	Role of the COX2-PGE ₂ axis in <i>S. pneumoniae</i> ii>-induced exacerbation of experimental fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L377-L392.	1.3	8
82	Inflammation and the Aging Process: Devil or Angel. Nutrition Reviews, 2007, 65, S167-S169.	2.6	7
83	Have advanced research technologies made real impact on respiratory medicine?. Respirology, 2010, 15, 876-880.	1.3	6
84	B Cells Are Not Involved in the Regulation of Adenoviral TGF-β1– or Bleomycin-Induced Lung Fibrosis in Mice. Journal of Immunology, 2022, 208, 1259-1271.	0.4	6
85	Antibodies to rat soluble IL-6 receptor stimulate B9 hybridoma cell proliferation. FEBS Letters, 1997, 408, 182-186.	1.3	4
86	Strategies targeting fibrosis in pulmonary disease. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 389-394.	0.5	3
87	Identification of Fibrocytes in Peripheral Blood. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1279-1280.	2.5	3
88	Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice – role of regulatory T cells. Immunobiology, 2018, 223, 331-341.	0.8	3
89	Rebuttal from Dr. Gauldie. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1207-1208.	2.5	2
90	Growth Factors. , 2002, , 283-289.		1

#	Article	IF	CITATIONS
91	Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. , 0, .		1
92	Transforming Growth Factor-β Peptide Signaling in Lung Development: Bronchopulmonary Dysplasia, Lung Fibrosis and Emphysema. Current Respiratory Medicine Reviews, 2005, 1, 325-329.	0.1	0
93	$TGF\hat{I}^2$ and Smad3 link inflammation to progressive fibrosis. International Congress Series, 2007, 1302, 103-113.	0.2	O
94	Growth Factors. , 2009, , 353-361.		0
95	Large-Scale Production of Autologous CD14+-Monocyte Derived Dendritic Cells Co-Electroporated with Amplified Total Tumour mRNA and Human CD40L mRNA in Patients with B-Cell Chronic Lymphocytic Leukemia Blood, 2006, 108, 3720-3720.	0.6	O
96	Transforming Growth Factor- \hat{l}^2 Peptide Signaling in Pulmonary Development, Bronchopulmonary Dysplasia, Fibrosis, and Emphysema. , 2008, , 621-628.		0