Olivier De Backer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11360765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of Variants in <i>TMEM45A</i> With Keratoglobus. JAMA Ophthalmology, 2021, 139, 1089.	1.4	1
2	Deletion of TNFAIP6 Gene in Human Keratinocytes Demonstrates a Role for TSG-6 to Retain Hyaluronan Inside Epidermis. JID Innovations, 2021, 1, 100054.	1.2	11
3	Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death and Differentiation, 2018, 25, 190-203.	5.0	69
4	Deletion of <i>Maged1</i> in mice abolishes locomotor and reinforcing effects of cocaine. EMBO Reports, 2018, 19, .	2.0	16
5	TMEM45A Is Dispensable for Epidermal Morphogenesis, Keratinization and Barrier Formation. PLoS ONE, 2016, 11, e0147069.	1.1	9
6	Polyhydramnios, Transient Antenatal Bartter's Syndrome, and <i>MAGED2</i> Mutations. New England Journal of Medicine, 2016, 374, 1853-1863.	13.9	148
7	Decrease of mitochondrial p53 during late apoptosis is linked to its dephosphorylation on serine 20. Cancer Biology and Therapy, 2015, 16, 1296-1307.	1.5	10
8	Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genetics, 2012, 8, e1003150.	1.5	48
9	Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. Human Molecular Genetics, 2012, 21, 4703-4717.	1.4	65
10	TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer, 2012, 12, 391.	1.1	80
11	Mouse embryonic stem cells induce targeted DNA demethylation within human MAGE-A1 transgenes. Epigenetics, 2008, 3, 38-42.	1.3	11
12	Early Forebrain Wiring: Genetic Dissection Using Conditional <i>Celsr3</i> Mutant Mice. Science, 2008, 320, 946-949.	6.0	161
13	Protocadherin Celsr3 is crucial in axonal tract development. Nature Neuroscience, 2005, 8, 451-457.	7.1	225
14	Comparative expression analysis of theMAGED genes during embryogenesis and brain development. Developmental Dynamics, 2004, 230, 325-334.	0.8	34
15	MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer, 2001, 92, 2778-2785.	2.0	110
16	Cell- and stage-specific expression of Mage genes during mouse spermatogenesis. Mammalian Genome, 2000, 11, 696-699.	1.0	22
17	A New Family of Mouse Genes Homologous to the HumanMAGEGenes. Genomics, 1999, 55, 176-184.	1.3	62
18	Genes coding for melanoma antigens recognised by cytolytic T lymphocytes. Eve, 1997. 11. 243-248.	1.1	16

OLIVIER DE BACKER

#	Article	IF	CITATIONS
19	Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics, 1995, 42, 282-290.	1.2	84
20	The SMAGE gene family is expressed in post-meiotic spermatids during mouse germ cell differentiation. Immunogenetics, 1995, 43, 97-100.	1.2	29
21	Structure, Chromosomal Location, and Expression Pattern of Three Mouse Genes Homologous to the Human MAGE Genes. Genomics, 1995, 28, 74-83.	1.3	55
22	Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics, 1994, 40, 360-369.	1.2	554
23	Sequence of the Salmonella typhimurium StyLT1 restriction-modification genes: homologies with EcoP1 and EcoP15 type-III R-M systems and presence of helicase domains. Gene, 1993, 127, 105-110.	1.0	24
24	Identification of the recognition sequence for the M· StyLTI methyltransferase of Salmonella typhimurium LT7: an asymmetric site typical of type-III enzymes. Gene, 1991, 97, 103-107.	1.0	14