Jason G Kettle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1135970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and optimization of a novel series of selective PIP5K inhibitors. Bioorganic and Medicinal Chemistry, 2022, 54, 116557.	1.4	5
2	Discovery of AZD4625, a Covalent Allosteric Inhibitor of the Mutant GTPase KRAS ^{G12C} . Journal of Medicinal Chemistry, 2022, 65, 6940-6952.	2.9	29
3	Drugging the undruggable: a computational chemist's view of KRASG12C. RSC Medicinal Chemistry, 2021, 12, 609-614.	1.7	1
4	Covalent inhibitors of the GTPase KRAS ^{G12C} : a review of the patent literature. Expert Opinion on Therapeutic Patents, 2020, 30, 103-120.	2.4	19
5	Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors. Science Translational Medicine, 2020, 12, .	5.8	16
6	Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. Journal of the American Chemical Society, 2020, 142, 10358-10372.	6.6	44
7	Structure-Based Design and Pharmacokinetic Optimization of Covalent Allosteric Inhibitors of the Mutant GTPase KRAS ^{G12C} . Journal of Medicinal Chemistry, 2020, 63, 4468-4483.	2.9	55
8	Discovery of (2 <i>R</i>)- <i>N</i> -[3-[2-[(3-Methoxy-1-methyl-pyrazol-4-yl)amino]pyrimidin-4-yl]-1 <i>H</i> -indol-7-yl]-2-(4-me (AZD4205) as a Potent and Selective Janus Kinase 1 Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 4517-4527.	thylpipera	zin-1-yl)prop
9	The Pharmacokinetic–Pharmacodynamic (PKPD) Relationships of AZD3229, a Novel and Selective Inhibitor of KIT, in a Range of Mouse Xenograft Models of GIST. Clinical Cancer Research, 2020, 26, 3751-3759.	3.2	6
10	Discovery of <i>N</i> -(4-{[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino}phenyl)-2-[4-(propan-2-yl)-1 <i>H</i> -1,2,3-tria (AZD3229), a Potent Pan-KIT Mutant Inhibitor for the Treatment of Gastrointestinal Stromal Tumors. Journal of Medicinal Chemistry, 2018, 61, 8797-8810.	zol-1-yl]ac 2.9	etamide 43
11	Orally Bioavailable and Blood–Brain Barrier-Penetrating ATM Inhibitor (AZ32) Radiosensitizes Intracranial Gliomas in Mice. Molecular Cancer Therapeutics, 2018, 17, 1637-1647.	1.9	46
12	Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 5235-5244.	2.9	18
13	Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 1. Expert Opinion on Therapeutic Patents, 2017, 27, 127-143.	2.4	29
14	Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 2. Expert Opinion on Therapeutic Patents, 2017, 27, 145-161.	2.4	14
15	Standing on the shoulders of giants: a retrospective analysis of kinase drug discovery at AstraZeneca. Drug Discovery Today, 2016, 21, 1596-1608.	3.2	14
16	Potent and Selective Inhibitors of MTH1 Probe Its Role in Cancer Cell Survival. Journal of Medicinal Chemistry, 2016, 59, 2346-2361.	2.9	121
17	Small Molecule Binding Sites on the Ras:SOS Complex Can Be Exploited for Inhibition of Ras Activation. Journal of Medicinal Chemistry, 2015, 58, 2265-2274.	2.9	104
18	Discovery and Optimization of a Novel Series of Dyrk1B Kinase Inhibitors To Explore a MEK Resistance Hypothesis. Journal of Medicinal Chemistry, 2015, 58, 2834-2844.	2.9	19

JASON G KETTLE

#	ARTICLE	IF	CITATIONS
19	Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3. Journal of Medicinal Chemistry, 2015, 58, 3611-3625.	2.9	71
20	Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discovery Today, 2015, 20, 11-17.	3.2	161
21	Discovery of AZD8931, an Equipotent, Reversible Inhibitor of Signaling by EGFR, HER2, and HER3 Receptors. ACS Medicinal Chemistry Letters, 2013, 4, 742-746.	1.3	34
22	Diverse Heterocyclic Scaffolds as Allosteric Inhibitors of AKT. Journal of Medicinal Chemistry, 2012, 55, 1261-1273.	2.9	48
23	A new series of neutral 5-substituted 4-anilinoquinazolines as potent, orally active inhibitors of erbB2 receptor tyrosine kinase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 674-678.	1.0	19
24	Neutral 5-substituted 4-anilinoquinazolines as potent, orally active inhibitors of erbB2 receptor tyrosine kinase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6326-6329.	1.0	25
25	Inhibitors of epidermal growth factor receptor tyrosine kinase: Novel C-5 substituted anilinoquinazolines designed to target the ribose pocket. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1633-1637.	1.0	42
26	Inhibitors of epidermal growth factor receptor tyrosine kinase: Optimisation of potency and in vivo pharmacokinetics. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4908-4912.	1.0	31
27	5-Substituted 4-anilinoquinazolines as potent, selective and orally active inhibitors of erbB2 receptor tyrosine kinase. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4226-4229.	1.0	38
28	N-Benzylindole-2-carboxylic Acids: Potent Functional Antagonists of the CCR2b Chemokine Receptor ChemInform, 2004, 35, no.	0.1	0
29	N-Benzylindole-2-carboxylic acids: potent functional antagonists of the CCR2b chemokine receptor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 405-408.	1.0	32
30	Facile synthesis of 3-alkoxyindoles via rhodium(II)-catalysed diazoindole O–H insertion reactions. Tetrahedron Letters, 2000, 41, 6905-6907.	0.7	19