
Christer Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11357193/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry. PLoS ONE, 2013, 8, e71206.	2.5	13
2	Poplar Proteomics. , 2011, , 128-165.		1
3	Proteomics of Plasma Membranes from Poplar Trees Reveals Tissue Distribution of Transporters, Receptors, and Proteins in Cell Wall Formation. Molecular and Cellular Proteomics, 2010, 9, 368-387.	3.8	61
4	Purification and Proteomic Analysis of Plant Plasma Membranes. Methods in Molecular Biology, 2008, 432, 161-173.	0.9	18
5	Phase Partition-A Method for Purification and Analysis of Cell Organelles and Membrane Vesicles. Methods of Biochemical Analysis, 2006, 28, 115-150.	0.2	131
6	Plasma Membrane H+-ATPase and 14-3-3 Isoforms of Arabidopsis Leaves: Evidence for Isoform Specificity in the 14-3-3/H+-ATPase Interaction. Plant and Cell Physiology, 2004, 45, 1202-1210.	3.1	60
7	Arabidopsis Plasma Membrane Proteomics Identifies Components of Transport, Signal Transduction and Membrane Trafficking. Plant and Cell Physiology, 2004, 45, 1543-1556.	3.1	236
8	Evolution and isoform specificity of plant 14-3-3 proteins. Plant Molecular Biology, 2002, 50, 1011-1018.	3.9	66
9	Data Mining the Arabidopsis Genome Reveals Fifteen 14-3-3 Genes. Expression Is Demonstrated for Two out of Five Novel Genes. Plant Physiology, 2001, 127, 142-149.	4.8	164
10	An abundant TIP expressed in mature highly vacuolated cells. Plant Journal, 2000, 21, 83-90.	5.7	43
11	Evolution of the 14-3-3 Protein Family: Does the Large Number of Isoforms in Multicellular Organisms Reflect Functional Specificity?. Journal of Molecular Evolution, 2000, 51, 446-458.	1.8	179
12	The role of aquaporins in cellular and whole plant water balance. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 324-342.	2.6	313
13	Isolation of Plant Plasma Membranes and Production of Inside-Out Vesicles. , 2000, , 159-166.		4
14	Phosphorylation of Thr-948 at the C Terminus of the Plasma Membrane H+-ATPase Creates a Binding Site for the Regulatory 14-3-3 Protein. Plant Cell, 1999, 11, 2379-2391.	6.6	213
15	Phosphorylation of Thr-948 at the C Terminus of the Plasma Membrane H + -ATPase Creates a Binding Site for the Regulatory 14-3-3 Protein. Plant Cell, 1999, 11, 2379.	6.6	131
16	A Phosphothreonine Residue at the C-Terminal End of the Plasma Membrane H+-ATPase Is Protected by Fusicoccin-Induced 14–3–3 Binding. Plant Physiology, 1998, 118, 551-555.	4.8	135
17	Water Transport Activity of the Plasma Membrane Aquaporin PM28A Is Regulated by Phosphorylation. Plant Cell, 1998, 10, 451-459.	6.6	482
18	The 14-3-3 Protein Interacts Directly with the C-Terminal Region of the Plant Plasma Membrane H + -ATPase. Plant Cell, 1997, 9, 1805.	6.6	113

CHRISTER LARSSON

#	Article	IF	CITATIONS
19	Reinvestigation of auxin and fusicoccin stimulation of the plasma-membrane H+-ATPase activity. Planta, 1996, 199, 359.	3.2	37
20	The Major Integral Proteins of Spinach Leaf Plasma Membranes Are Putative Aquaporins and Are Phosphorylated in Response to Ca 2+ and Apoplastic Water Potential. Plant Cell, 1996, 8, 1181.	6.6	126
21	Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant Journal, 1995, 7, 165-173.	5.7	184
22	Multiple regulatory sites in the C-terminal autoinhibitory domain of the plasma membrane H+-ATPase. Plant Journal, 1995, 8, 959-962.	5.7	6
23	Rapid purification of the plasma membrane H+-ATPase in its non-activated form using FPLC. Physiologia Plantarum, 1994, 92, 389-396.	5.2	25
24	[44] Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Methods in Enzymology, 1994, , 451-469.	1.0	195
25	Fusicoccin Activates the Plasma Membrane H + -ATPase by a Mechanism Involving the C-Terminal Inhibitory Domain. Plant Cell, 1993, 5, 321.	6.6	83
26	Activators and inhibitors of the plant plasma membrane 1,3-β-glucan synthase. Biochemical Society Transactions, 1992, 20, 710-713.	3.4	10
27	Isolation and polypeptide composition of I,3-ss-glucan synthase from plasma membranes of Brassica oleracea. Physiologia Plantarum, 1991, 81, 289-294.	5.2	31
28	Sealed Inside-Out and Right-Side-Out Plasma Membrane Vesicles. Plant Physiology, 1990, 92, 871-880.	4.8	184
29	Effect of detergents on the H+-ATPase activity of inside-out and right-side-out plant plasma membrane vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1021, 133-140.	2.6	93
30	Activation of 1,3-beta-glucan synthase by Ca2+, spermine and cellobiose Localization of activator sites using inside-out plasma membrane vesicles. Physiologia Plantarum, 1989, 77, 196-201.	5.2	53
31	Cytochromes of plant plasma membranes. Characterization by absorbance difference spectrophotometry and redox titration. Physiologia Plantarum, 1989, 76, 123-134.	5.2	50
32	On the presence of inside-out plasma membrane vesicles and vanadate-inhibited K+,Mg2+-ATPase in microsomal fractions from wheat and maize roots. Physiologia Plantarum, 1989, 77, 12-19.	5.2	28
33	The sucrose carrier of the plant plasma membrane. I. Differential affinity labeling. Biochimica Et Biophysica Acta - Biomembranes, 1989, 978, 56-64.	2.6	34
34	Localization of donor and acceptor sites of NADH dehydrogenase activities using inside-out and right-side-out plasma membrane vesicles from plants. FEBS Letters, 1988, 239, 23-28.	2.8	48
35	Inside-out plant plasma membrane vesicles of high purity obtained by aqueous two-phase partitioning. FEBS Letters, 1988, 229, 289-292.	2.8	78
36	Redox Components in the Plant Plasma Membrane. , 1988, , 57-69.		7

Redox Components in the Plant Plasma Membrane. , 1988, , 57-69. 36

3

CHRISTER LARSSON

#	Article	IF	CITATIONS
37	[52] Preparation of high-purity plasma membranes. Methods in Enzymology, 1987, , 558-568.	1.0	342
38	Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: Identification of cerebroside as a major component. Archives of Biochemistry and Biophysics, 1987, 255, 385-391.	3.0	55
39	NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences. Physiologia Plantarum, 1987, 71, 9-19.	5.2	94
40	Biosynthesis of aromatic amino acids by highly purified spinach chloroplasts - Compartmentation and regulation of the reactions. Physiologia Plantarum, 1986, 68, 641-647.	5.2	49
41	Partitioning of Plant Cells, Cell Walls, Membranes, and Organelles. , 1985, , 497-527.		2
42	CYTOCHROME P-450/420 IN PLANT PLASMA MEMBRANES: A POSSIBLE COMPONENT OF THE BLUE-LIGHT-REDUCIBLE FLAVOPROTEIN-CYTOCHROME COMPLEX. Photochemistry and Photobiology, 1985, 42, 779-783.	2.5	46
43	Surface Properties of Right Side-Out Plasma Membrane Vesicles Isolated from Barley Roots and Leaves. Plant Physiology, 1985, 79, 72-79.	4.8	58
44	Preparation and polypeptide composition of chlorophyll-free plasma membranes from leaves of light-grown spinach and barley. Physiologia Plantarum, 1984, 62, 501-509.	5.2	236
45	Modification of the chloride requirement for photosynthetic O2 evolution. FEBS Letters, 1984, 168, 113-117.	2.8	109
46	Isolation of Plasma Membrane Vesicles from Leaves of Spinach and Barley, Useful for Studies on Transport of Carbon Assimilation Products. , 1984, , 673-676.		1
47	Highly purified intact chloroplasts from mesophyll protoplasts of the C4 plant Digitaria sanguinalis. Inhibition of phosphoglycerate reduction by orthophosphate and by phosphoenolpyruvate. Physiologia Plantarum, 1983, 57, 330-338.	5.2	18
48	Plasma Membranes from Oats Prepared by Partition in an Aqueous Polymer Two-Phase System. Plant Physiology, 1982, 70, 1429-1435.	4.8	169
49	Differential phosphorylation of the light-harvesting chlorophyll-protein complex in appressed and non-appressed regions of the thylakoid membrane. FEBS Letters, 1982, 149, 181-185.	2.8	70
50	Compartmentation and export of 14CO2 fixation products in mesophyll protoplasts from the C4-plant Digitaria sanguinalis. Archives of Biochemistry and Biophysics, 1981, 208, 121-130.	3.0	27
51	Distribution of ATPases in wheat root membranes separated by phase partition. Physiologia Plantarum, 1981, 52, 89-95.	5.2	78
52	Antibody inhibition of external aldolase activity in spinach chloroplast preparations. Physiologia Plantarum, 1980, 49, 378-382.	5.2	2
53	Enzymes Related to Serine Synthesis in Spinach Chloroplasts. Physiologia Plantarum, 1979, 45, 7-10.	5.2	52
54	14CO2 Fixation and Compartmentation of Carbon Metabolism in a Recombined Chloroplast- 'Cytoplasm' System. Physiologia Plantarum, 1979, 46, 221-226.	5.2	13

CHRISTER LARSSON

#	Article	IF	CITATIONS
55	Preparatiön of mitochondria from gree leaves of spinach by differential centrifugation and phase partition. Plant Science Letters, 1978, 13, 231-239.	1.8	47
56	Scanning electron microscopy of different populations of chloroplasts isolated by phase partition. Plant Science Letters, 1977, 8, 291-298.	1.8	16
57	Properties of chloroplasts isolated by phase partition. Molecular and Cellular Biochemistry, 1976, 11, 183-189.	3.1	9
58	A Study of DNA from Chloroplasts Separated by Counter-current Distribution Acta Chemica Scandinavica, 1975, 29b, 838-842.	0.7	6
59	Photosynthetic 14CO2 fixation by chloroplast populations isolated by a polymer two-phase technique. Biochimica Et Biophysica Acta - Bioenergetics, 1974, 357, 412-419.	1.0	49
60	Characterization of three classes of chloroplasts obtained by counter-current distribution. Biochimica Et Biophysica Acta - Bioenergetics, 1971, 245, 425-438.	1.0	55