## Samuel A Cushman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11356644/publications.pdf Version: 2024-02-01



SAMILEL & CLISHMAN

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 2006, 128, 231-240.                                           | 4.1 | 1,065     |
| 2  | Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. American<br>Naturalist, 2006, 168, 486-499.                                           | 2.1 | 571       |
| 3  | COMPARATIVE EVALUATION OF EXPERIMENTAL APPROACHES TO THE STUDY OF HABITAT FRAGMENTATION EFFECTS. , 2002, 12, 335-345.                                                    |     | 543       |
| 4  | Parsimony in landscape metrics: Strength, universality, and consistency. Ecological Indicators, 2008,<br>8, 691-703.                                                     | 6.3 | 473       |
| 5  | Multi-scale habitat selection modeling: a review and outlook. Landscape Ecology, 2016, 31, 1161-1175.                                                                    | 4.2 | 390       |
| 6  | Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 2010, 11, 375-385.                                           | 1.5 | 356       |
| 7  | Surface metrics: an alternative to patch metrics for the quantification of landscape structure.<br>Landscape Ecology, 2009, 24, 433-450.                                 | 4.2 | 352       |
| 8  | Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape<br>Ecology, 2004, 19, 435-455.                                       | 4.2 | 270       |
| 9  | Spurious correlations and inference in landscape genetics. Molecular Ecology, 2010, 19, 3592-3602.                                                                       | 3.9 | 253       |
| 10 | Hierarchical, Multi-scale decomposition of species-environment relationships. Landscape Ecology,<br>2002, 17, 637-646.                                                   | 4.2 | 251       |
| 11 | A Resistant-Kernel Model of Connectivity for Amphibians that Breed in Vernal Pools. Conservation<br>Biology, 2007, 21, 788-799.                                          | 4.7 | 249       |
| 12 | Gradient modeling of conifer species using random forests. Landscape Ecology, 2009, 24, 673-683.                                                                         | 4.2 | 245       |
| 13 | Modeling Species Distribution and Change Using Random Forest. , 2011, , 139-159.                                                                                         |     | 199       |
| 14 | Use of Empirically Derived Sourceâ€Destination Models to Map Regional Conservation Corridors.<br>Conservation Biology, 2009, 23, 368-376.                                | 4.7 | 198       |
| 15 | Movement behavior explains genetic differentiation in American black bears. Landscape Ecology, 2010,<br>25, 1613-1625.                                                   | 4.2 | 180       |
| 16 | Wolverine gene flow across a narrow climatic niche. Ecology, 2009, 90, 3222-3232.                                                                                        | 3.2 | 166       |
| 17 | Utility of computer simulations in landscape genetics. Molecular Ecology, 2010, 19, 3549-3564.                                                                           | 3.9 | 155       |
| 18 | Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Diversity and Distributions, 2018, 24, 868-879. | 4.1 | 147       |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The gradient concept of landscape structure. , 2005, , 112-119.                                                                                                                                                          |     | 145       |
| 20 | Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Molecular Ecology Resources, 2012, 12, 276-284.                                                             | 4.8 | 143       |
| 21 | Scale dependent inference in landscape genetics. Landscape Ecology, 2010, 25, 967-979.                                                                                                                                   | 4.2 | 141       |
| 22 | Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho.<br>Landscape Ecology, 2010, 25, 1601-1612.                                                                          | 4.2 | 138       |
| 23 | Patterns in the species-environment relationship depend on both scale and choice of response variables. Oikos, 2004, 105, 117-124.                                                                                       | 2.7 | 136       |
| 24 | Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity, 2013, 5, 51-72.                                                                                                                        | 1.7 | 130       |
| 25 | Scale dependence in habitat selection: the case of the endangered brown bear ( <i>Ursus arctos</i> ) in the Cantabrian Range (NW Spain). International Journal of Geographical Information Science, 2014, 28, 1531-1546. | 4.8 | 129       |
| 26 | Landscape effects on gene flow for a climateâ€sensitive montane species, the <scp>A</scp> merican pika.<br>Molecular Ecology, 2014, 23, 843-856.                                                                         | 3.9 | 117       |
| 27 | Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecology, 2012, 27, 369-380.                                                      | 4.2 | 109       |
| 28 | Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecology, 2014, 29, 541-557.                                             | 4.2 | 107       |
| 29 | Climate Change and Future Wildfire in the Western United States: An Ecological Approach to<br>Nonstationarity. Earth's Future, 2018, 6, 1097-1111.                                                                       | 6.3 | 105       |
| 30 | Multiple-scale prediction of forest loss risk across Borneo. Landscape Ecology, 2017, 32, 1581-1598.                                                                                                                     | 4.2 | 104       |
| 31 | HIERARCHICAL ANALYSIS OF FOREST BIRD SPECIES–ENVIRONMENT RELATIONSHIPS IN THE OREGON COAST RANGE. , 2004, 14, 1090-1105.                                                                                                 |     | 101       |
| 32 | Multi-taxa population connectivity in the Northern Rocky Mountains. Ecological Modelling, 2012, 231, 101-112.                                                                                                            | 2.5 | 99        |
| 33 | Why Did the Bear Cross the Road? Comparing the Performance of Multiple Resistance Surfaces and Connectivity Modeling Methods. Diversity, 2014, 6, 844-854.                                                               | 1.7 | 99        |
| 34 | Evaluating population connectivity for species of conservation concern in the American Great Plains.<br>Biodiversity and Conservation, 2013, 22, 2583-2605.                                                              | 2.6 | 96        |
| 35 | Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency<br>in landscape genetic studies. Ecography, 2008, 31, 685-697.                                                     | 4.5 | 89        |
| 36 | A comparison of regression methods for model selection in individualâ€based landscape genetic<br>analysis. Molecular Ecology Resources, 2018, 18, 55-67.                                                                 | 4.8 | 89        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Operationalizing Ecological Resilience Concepts for Managing Species and Ecosystems at Risk.<br>Frontiers in Ecology and Evolution, 2019, 7, .                                                               | 2.2 | 82        |
| 38 | The Gradient Paradigm: A Conceptual and Analytical Framework for Landscape Ecology. , 2010, , 83-108.                                                                                                        |     | 82        |
| 39 | Landscape genetics and limiting factors. Conservation Genetics, 2013, 14, 263-274.                                                                                                                           | 1.5 | 79        |
| 40 | Evaluating the intersection of a regional wildlife connectivity network with highways. Movement Ecology, 2013, 1, 12.                                                                                        | 2.8 | 75        |
| 41 | Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift<br>and contraction due to regional climatic changes. Forest Ecology and Management, 2018, 411, 176-186. | 3.2 | 73        |
| 42 | Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa.<br>PLoS ONE, 2018, 13, e0196213.                                                                          | 2.5 | 72        |
| 43 | A Multiscale Landscape Approach to Predicting Bird and Moth Rarity Hotspots in a Threatened Pitch<br>Pine-Scrub Oak Community. Conservation Biology, 2004, 18, 1063-1077.                                    | 4.7 | 70        |
| 44 | Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecological Applications, 2014, 24, 1000-1014.                                       | 3.8 | 70        |
| 45 | A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to<br>landscape change. Landscape Ecology, 2016, 31, 1337-1353.                                              | 4.2 | 70        |
| 46 | LANDSCAPE-LEVEL PATTERNS OF AVIAN DIVERSITY IN THE OREGON COAST RANGE. Ecological Monographs, 2003, 73, 259-281.                                                                                             | 5.4 | 69        |
| 47 | A multi-scale, multi-species approach for assessing effectiveness of habitat and connectivity conservation for endangered felids. Biological Conservation, 2020, 245, 108523.                                | 4.1 | 69        |
| 48 | Calculating the configurational entropy of a landscape mosaic. Landscape Ecology, 2016, 31, 481-489.                                                                                                         | 4.2 | 67        |
| 49 | Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landscape Ecology, 2013, 28, 471-486.                                                   | 4.2 | 64        |
| 50 | A multi-scale analysis of species-environment relationships: breeding birds in a pitch pine–scrub oak<br>(Pinus rigida–Quercus ilicifolia) community. Biological Conservation, 2003, 112, 307-317.           | 4.1 | 63        |
| 51 | Influences of scale on bat habitat relationships in a forested landscape in Nicaragua. Landscape<br>Ecology, 2016, 31, 1299-1318.                                                                            | 4.2 | 63        |
| 52 | Use of Abundance of One Species as a Surrogate for Abundance of Others. Conservation Biology, 2010, 24, 830-840.                                                                                             | 4.7 | 62        |
| 53 | Isolation by distance, resistance and/or clusters? Lessons learned from a forestâ€dwelling carnivore<br>inhabiting a heterogeneous landscape. Molecular Ecology, 2015, 24, 5110-5129.                        | 3.9 | 60        |
| 54 | Multiâ€scale habitat modelling identifies spatial conservation priorities for mainland clouded leopards<br>( <i>Neofelis nebulosa</i> ). Diversity and Distributions, 2019, 25, 1639-1654.                   | 4.1 | 60        |

| #  | Article                                                                                                                                                                                                     | IF          | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 55 | Mapping Landscape Resistance to Identify Corridors and Barriers for Elephant Movement in Southern<br>Africa. , 2010, , 349-367.                                                                             |             | 59             |
| 56 | Spatiotemporal variation in resource selection: insights from the American marten ( <i>Martes) Tj ETQq0 0 0 rg</i>                                                                                          | BT /Qverloo | ck 10 Tf 50 70 |
| 57 | Multispecies assessment of core areas and connectivity of desert carnivores in central Iran. Diversity and Distributions, 2018, 24, 193-207.                                                                | 4.1         | 56             |
| 58 | Do forest community types provide a sufficient basis to evaluate biological diversity?. Frontiers in Ecology and the Environment, 2008, 6, 13-17.                                                           | 4.0         | 53             |
| 59 | Population connectivity and genetic diversity of American marten (Martes americana) in the United<br>States northern Rocky Mountains in a climate change context. Conservation Genetics, 2013, 14, 529-541. | 1.5         | 52             |
| 60 | Spatio-temporal ecology of sympatric felids on Borneo. Evidence for resource partitioning?. PLoS<br>ONE, 2018, 13, e0200828.                                                                                | 2.5         | 52             |
| 61 | Landscape connectivity modeling from the perspective of animal dispersal. Landscape Ecology, 2020, 35, 41-58.                                                                                               | 4.2         | 52             |
| 62 | Current State of the Art for Statistical Modelling of Species Distributions. , 2010, , 273-311.                                                                                                             |             | 51             |
| 63 | Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results. Landscape Ecology, 2016, 31, 1209-1225.            | 4.2         | 47             |
| 64 | Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography, 2016, 39, 419-426.                                                                | 4.5         | 46             |
| 65 | Multi-scale prediction of landscape resistance for tiger dispersal in central India. Landscape Ecology,<br>2016, 31, 1355-1368.                                                                             | 4.2         | 45             |
| 66 | Landscape Genetics for the Empirical Assessment of Resistance Surfaces: The European Pine Marten<br>(Martes martes) as a Target-Species of a Regional Ecological Network. PLoS ONE, 2014, 9, e110552.       | 2.5         | 44             |
| 67 | Species and space: a combined gap analysis to guide management planning of conservation areas.<br>Landscape Ecology, 2020, 35, 1505-1517.                                                                   | 4.2         | 44             |
| 68 | Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Frontiers in Genetics, 2014, 5, 197.                          | 2.3         | 40             |
| 69 | Tiger abundance and gene flow in Central India are driven by disparate combinations of topography and land cover. Diversity and Distributions, 2017, 23, 863-874.                                           | 4.1         | 39             |
| 70 | Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biological Conservation, 2019, 235, 63-76.                                    | 4.1         | 38             |
| 71 | Calculation of Configurational Entropy in Complex Landscapes. Entropy, 2018, 20, 298.                                                                                                                       | 2.2         | 37             |
| 72 | Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas. Landscape Ecology, 2019, 34, 503-519.                                         | 4.2         | 37             |

| #  | Article                                                                                                                                                                                                                         | IF                    | CITATIONS               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| 73 | Multi-scale habitat selection modeling identifies threats and conservation opportunities for the Sunda clouded leopard (Neofelis diardi). Biological Conservation, 2018, 227, 92-103.                                           | 4.1                   | 35                      |
| 74 | Forest cover and level of protection influence the island-wide distribution of an apex carnivore and<br>umbrella species, the Sri Lankan leopard (Panthera pardus kotiya). Biodiversity and Conservation, 2018,<br>27, 235-263. | 2.6                   | 34                      |
| 75 | Spatially-explicit estimation of Wright's neighborhood size in continuous populations. Frontiers in Ecology and Evolution, 2014, 2, .                                                                                           | 2.2                   | 33                      |
| 76 | Evaluating scenarios of landscape change for Sunda clouded leopard connectivity in a human dominated landscape. Biological Conservation, 2018, 222, 232-240.                                                                    | 4.1                   | 33                      |
| 77 | Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran.<br>Landscape Ecology, 2019, 34, 2451-2467.                                                                                     | 4.2                   | 33                      |
| 78 | Contrasting use of habitat, landscape elements, and corridors by grey wolf and golden jackal in central Iran. Landscape Ecology, 2019, 34, 1263-1277.                                                                           | 4.2                   | 32                      |
| 79 | Metaâ€replication, sampling bias, and multiâ€scale model selection: A case study on snow leopard<br>( <i>Panthera uncia</i> ) in western China. Ecology and Evolution, 2020, 10, 7686-7712.                                     | 1.9                   | 32                      |
| 80 | Sensitivity of resource selection and connectivity models to landscape definition. Landscape Ecology, 2017, 32, 835-855.                                                                                                        | 4.2                   | 31                      |
| 81 | Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree ( <i>Populus) Tj ETQq1 1 0.784</i>            | I314 r <b>gBī</b> /Ov | erl <b>ør</b> k 10 Tf 5 |
| 82 | Metrics and Models for Quantifying Ecological Resilience at Landscape Scales. Frontiers in Ecology and Evolution, 2019, 7, .                                                                                                    | 2.2                   | 31                      |
| 83 | The influence of landscape characteristics and home-range size on the quantification of landscape-genetics relationships. Landscape Ecology, 2012, 27, 253-266.                                                                 | 4.2                   | 30                      |
| 84 | Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican Spotted Owl.<br>Condor, 2017, 119, 641-658.                                                                                                | 1.6                   | 30                      |
| 85 | Sustainable land-use optimization using NSGA-II: theoretical and experimental comparisons of improved algorithms. Landscape Ecology, 2021, 36, 1877-1892.                                                                       | 4.2                   | 28                      |
| 86 | Empirical modeling of spatial and temporal variation in warm season nocturnal air temperatures in<br>two North Idaho mountain ranges, USA. Agricultural and Forest Meteorology, 2011, 151, 261-269.                             | 4.8                   | 27                      |
| 87 | Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the U.S. northern Rocky Mountains. Diversity and Distributions, 2012, 18, 873-884.                                            | 4.1                   | 27                      |
| 88 | Empirical validation of landscape resistance models: insights from the Greater Sage-Grouse (Centrocercus urophasianus). Landscape Ecology, 2015, 30, 1837-1850.                                                                 | 4.2                   | 27                      |
| 89 | Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landscape Ecology, 2020, 35, 727-746.                                 | 4.2                   | 27                      |
| 90 | Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes, 2018, 9, 403.                                                         | 2.4                   | 26                      |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Machine learning in landscape ecological analysis: a review of recent approaches. Landscape Ecology, 2022, 37, 1227-1250.                                                                                                                                  | 4.2 | 26        |
| 92  | Habitat Fragmentation Effects Depend on Complex Interactions Between Population Size and Dispersal<br>Ability: Modeling Influences of Roads, Agriculture and Residential Development Across a Range of<br>Life-History Characteristics. , 2010, , 369-385. |     | 25        |
| 93  | Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS ONE, 2018, 13, e0196974.                                                                        | 2.5 | 23        |
| 94  | Prioritizing areas for conservation outside the existing protected area network in Bhutan: the use of multi-species, multi-scale habitat suitability models. Landscape Ecology, 2021, 36, 1281-1309.                                                       | 4.2 | 21        |
| 95  | Effects of climatic gradients on genetic differentiation of Caragana on the Ordos Plateau, China.<br>Landscape Ecology, 2013, 28, 1729-1741.                                                                                                               | 4.2 | 20        |
| 96  | Modelling multilocus selection in an individualâ€based, spatiallyâ€explicit landscape genetics framework.<br>Molecular Ecology Resources, 2020, 20, 605-615.                                                                                               | 4.8 | 20        |
| 97  | Ecological differences and limiting factors in different regional contexts: landscape genetics of the stone marten inÂthe Iberian Peninsula. Landscape Ecology, 2017, 32, 1269-1283.                                                                       | 4.2 | 19        |
| 98  | Predicting biodiversity richness in rapidly changing landscapes: climate, low human pressure or protection as salvation?. Biodiversity and Conservation, 2020, 29, 4035-4057.                                                                              | 2.6 | 19        |
| 99  | Integrating spatial analysis and questionnaire survey to better understand human-onager conflict in Southern Iran. Scientific Reports, 2021, 11, 12423.                                                                                                    | 3.3 | 19        |
| 100 | Landscape-level analysis of mountain goat population connectivity in Washington and southern<br>British Columbia. Conservation Genetics, 2015, 16, 1195-1207.                                                                                              | 1.5 | 18        |
| 101 | Adaptive trait syndromes along multiple economic spectra define cold and warm adapted ecotypes in a widely distributed foundation tree species. Journal of Ecology, 2021, 109, 1298-1318.                                                                  | 4.0 | 18        |
| 102 | Managing emerging threats to spotted owls. Journal of Wildlife Management, 2018, 82, 682-697.                                                                                                                                                              | 1.8 | 17        |
| 103 | Where buffalo and cattle meet: modelling interspecific contact risk using cumulative resistant kernels. Ecography, 2018, 41, 1616-1626.                                                                                                                    | 4.5 | 17        |
| 104 | Landscape Applications of Machine Learning: Comparing Random Forests and Logistic Regression in<br>Multi-Scale Optimized Predictive Modeling of American Marten Occurrence in Northern Idaho, USA. ,<br>2018, , 185-203.                                   |     | 17        |
| 105 | Multi-scale path-level analysis of jaguar habitat use in the Pantanal ecosystem. Biological<br>Conservation, 2021, 253, 108900.                                                                                                                            | 4.1 | 17        |
| 106 | Landscape Ecology: Past, Present, and Future. , 2010, , 65-82.                                                                                                                                                                                             |     | 15        |
| 107 | Winter bait stations as a multispecies survey tool. Ecology and Evolution, 2017, 7, 6826-6838.                                                                                                                                                             | 1.9 | 15        |
| 108 | Targeting conifer removal to create an even playing field for birds in the Great Basin. Biological Conservation, 2021, 257, 109130.                                                                                                                        | 4.1 | 15        |

7

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Separating the effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework. Landscape Ecology, 2019, 34, 105-117.                                                           | 4.2 | 14        |
| 110 | Forecasting habitat and connectivity for pronghorn across the Great Basin ecoregion. Diversity and Distributions, 2021, 27, 2315-2329.                                                                              | 4.1 | 14        |
| 111 | How Important Are Resistance, Dispersal Ability, Population Density and Mortality in Temporally<br>Dynamic Simulations of Population Connectivity? A Case Study of Tigers in Southeast Asia. Land, 2020,<br>9, 415. | 2.9 | 13        |
| 112 | The Problem of Ecological Scaling in Spatially Complex, Nonequilibrium Ecological Systems. , 2010, ,<br>43-63.                                                                                                      |     | 13        |
| 113 | Landscape Metrics, Scales of Resolution. Managing Forest Ecosystems, 2008, , 33-51.                                                                                                                                 | 0.9 | 12        |
| 114 | Synthesizing habitat connectivity analyses of a globally important humanâ€dominated<br>tigerâ€conservation landscape. Conservation Biology, 2022, 36, .                                                             | 4.7 | 12        |
| 115 | FracL: A Tool for Characterizing the Fractality of Landscape Gradients from a New Perspective. ISPRS<br>International Journal of Geo-Information, 2019, 8, 466.                                                     | 2.9 | 11        |
| 116 | Habitat amount mediates the effect of fragmentation on a pollinator's reproductive performance, but<br>not on its foraging behaviour. Oecologia, 2020, 193, 523-534.                                                | 2.0 | 11        |
| 117 | Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner<br>Mongolia plateau in China. Plant Ecology, 2015, 216, 925-937.                                                      | 1.6 | 10        |
| 118 | Morphological Differences in Pinus strobiformis Across Latitudinal and Elevational Gradients.<br>Frontiers in Plant Science, 2020, 11, 559697.                                                                      | 3.6 | 10        |
| 119 | The effect of gene flow from unsampled demes in landscape genetic analysis. Molecular Ecology<br>Resources, 2021, 21, 394-403.                                                                                      | 4.8 | 10        |
| 120 | Optimization of spatial scale, but not functional shape, affects the performance of habitat suitability models: a case study of tigers (Panthera tigris) in Thailand. Landscape Ecology, 2021, 36, 455-474.         | 4.2 | 10        |
| 121 | Effects of non-representative sampling design on multi-scale habitat models: flammulated owls in the<br>Rocky Mountains Ecological Modelling, 2021, 450, 109566.                                                    | 2.5 | 10        |
| 122 | The effect of scale in quantifying fire impacts on species habitats. Fire Ecology, 2020, 16, .                                                                                                                      | 3.0 | 10        |
| 123 | Temporal Non-stationarity of Path-Selection Movement Models and Connectivity: An Example of African Elephants in Kruger National Park. Frontiers in Ecology and Evolution, 2021, 9, .                               | 2.2 | 9         |
| 124 | Entropy in Landscape Ecology: A Quantitative Textual Multivariate Review. Entropy, 2021, 23, 1425.                                                                                                                  | 2.2 | 9         |
| 125 | Seascape genetics and connectivity modelling for an endangered Mediterranean coral in the northern<br>Ionian and Adriatic seas. Landscape Ecology, 2019, 34, 2649-2668.                                             | 4.2 | 8         |
| 126 | Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across<br>Sabah, Borneo. Landscape Ecology, 2019, 34, 275-290.                                                             | 4.2 | 8         |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Space and Time in Ecology: Noise or Fundamental Driver?. , 2010, , 19-41.                                                                                                                                    |     | 8         |
| 128 | Data on Distribution and Abundance: Monitoring for Research and Management. , 2010, , 111-129.                                                                                                               |     | 8         |
| 129 | Evidence of spatial genetic structure in a snow leopard population from Gansu, China. Heredity, 2021, 127, 522-534.                                                                                          | 2.6 | 8         |
| 130 | Multivariate Landscape Trajectory Analysis. , 2007, , 119-140.                                                                                                                                               |     | 7         |
| 131 | Topographical features and forest cover influence landscape connectivity and gene flow of the<br>Caucasian pit viper, Gloydius caucasicus (Nikolsky, 1916), in Iran. Landscape Ecology, 2019, 34, 2615-2630. | 4.2 | 6         |
| 132 | Assessing the complex relationship between landscape, gene flow, and range expansion of a<br>Mediterranean carnivore. European Journal of Wildlife Research, 2019, 65, 1.                                    | 1.4 | 6         |
| 133 | Genetic connectivity of two marine gastropods in the Mediterranean Sea: seascape genetics reveals speciesâ€specific oceanographic drivers of gene flow. Molecular Ecology, 2021, 30, 4608-4629.              | 3.9 | 6         |
| 134 | Random forest modelling of multiâ€scale, multiâ€species habitat associations within <scp>KAZA</scp><br>transfrontier conservation area using spoor data. Journal of Applied Ecology, 2022, 59, 2346-2359.    | 4.0 | 5         |
| 135 | Scale-dependent seasonal habitat selection by jaguars (Panthera onca) and pumas (Puma concolor) in<br>Panama. Landscape Ecology, 2022, 37, 129-146.                                                          | 4.2 | 4         |
| 136 | Pathwalker: A New Individual-Based Movement Model for Conservation Science and Connectivity Modelling. ISPRS International Journal of Geo-Information, 2022, 11, 329.                                        | 2.9 | 4         |
| 137 | Modeling Understory Vegetation and Its Response to Fire. , 2009, , 391-414.                                                                                                                                  |     | 3         |
| 138 | Mediterranean scrubland and elevation drive gene flow of a Mediterranean carnivore, the Egyptian mongooseHerpestes ichneumon(Herpestidae). Biological Journal of the Linnean Society, 2016, , .              | 1.6 | 3         |
| 139 | Investigating Carnivore Guild Structure: Spatial and Temporal Relationships amongst Threatened Felids in Myanmar. ISPRS International Journal of Geo-Information, 2021, 10, 808.                             | 2.9 | 3         |
| 140 | Genetic Sampling of Palmer's Chipmunks in the Spring Mountains, Nevada. Western North American<br>Naturalist, 2013, 73, 198-210.                                                                             | 0.4 | 1         |
| 141 | Landscape Genetics. , 2010, , 313-328.                                                                                                                                                                       |     | 1         |