Amelia Bartholomew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11355398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 2002, 30, 42-48.	0.4	2,084
2	Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 2003, 101, 2999-3001.	1.4	683
3	IFNâ€Î³ activation of mesenchymal stem cells for treatment and prevention of graft <i>versus</i> host disease. European Journal of Immunology, 2008, 38, 1745-1755.	2.9	528
4	MODIFICATIONS OF THE CONDITIONING REGIMEN FOR ACHIEVING MIXED CHIMERISM AND DONOR-SPECIFIC TOLERANCE IN CYNOMOLGUS MONKEYS1. Transplantation, 1997, 64, 709-716.	1.0	176
5	Baboon Mesenchymal Stem Cells Can Be Genetically Modified to Secrete Human ErythropoietinIn Vivo. Human Gene Therapy, 2001, 12, 1527-1541.	2.7	157
6	LONG-TERM OUTCOME AND ALLOANTIBODY PRODUCTION IN A NON-MYELOABLATIVE REGIMEN FOR INDUCTION OF RENAL ALLOGRAFT TOLERANCE1. Transplantation, 1999, 68, 1767-1775.	1.0	157
7	Immunologic Consequences of Multiple, High-Dose Administration of Allogeneic Mesenchymal Stem Cells to Baboons. Cell Transplantation, 2006, 15, 711-721.	2.5	152
8	The case for strategic international alliances to harness nutritional genomics for public and personal health. British Journal of Nutrition, 2005, 94, 623-632.	2.3	137
9	Stem Cells and Healing: Impact on Inflammation. Advances in Wound Care, 2013, 2, 369-378.	5.1	96
10	Pathogenesis and persistence of cryptoglandular anal fistula: a systematic review. Techniques in Coloproctology, 2017, 21, 425-432.	1.8	89
11	Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Research and Therapy, 2011, 2, 36.	5.5	81
12	Advancement of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation (MISOT). Transplantation, 2010, 90, 124-126.	1.0	66
13	Toward MSC in Solid Organ Transplantation: 2008 Position Paper of the MISOT Study Group. Transplantation, 2009, 88, 614-619.	1.0	64
14	Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Experimental Hematology, 2004, 32, 494-501.	0.4	56
15	Chronic Inflammation and Angiogenic Signaling Axis Impairs Differentiation of Dental-Pulp Stem Cells. PLoS ONE, 2014, 9, e113419.	2.5	50
16	Nutrigenomics: concepts and applications to pharmacogenomics and clinical medicine. Pharmacogenomics, 2007, 8, 369-390.	1.3	44
17	Application of nutrigenomic concepts to Type 2 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 89-103.	2.6	43
18	Subject-Based versus Population-Based Care after Radiation Exposure. Radiation Research, 2015, 184, 46.	1.5	28

2

Amelia Bartholomew

#	Article	IF	CITATIONS
19	Interferon Gamma–treated Dental Pulp Stem Cells Promote Human Mesenchymal Stem Cell Migration InÂVitro. Journal of Endodontics, 2015, 41, 1259-1264.	3.1	27
20	Mesenchymal Stem Cells in the Induction of Transplantation Tolerance. Transplantation, 2009, 87, S55-S57.	1.0	24
21	Specific Members of the Gut Microbiota are Reliable Biomarkers of Irradiation Intensity and Lethality in Large Animal Models of Human Health. Radiation Research, 2018, 191, 107.	1.5	17
22	Mesenchymal stem cells enhance xenochimerism in NK-depleted hosts. Surgery, 2006, 140, 315-321.	1.9	15
23	Demonstration of multilineage chimerism in a nonhuman primate concordant xenograft model. Xenotransplantation, 1998, 5, 298-304.	2.8	13
24	A comparative analysis of gut microbiota disturbances in the Gottingen minipig and rhesus macaque models of acute radiation syndrome following bioequivalent radiation exposures. Radiation and Environmental Biophysics, 2018, 57, 419-426.	1.4	12
25	Mesenchymal Stem Cells Synergize with 635, 532, and 405 nm Laser Wavelengths in Renal Fibrosis: A Pilot Study. Photomedicine and Laser Surgery, 2016, 34, 556-563.	2.0	11
26	Ex Vivo Expansion and Genetic Marking of Primitive Human and Baboon Hematopoietic Cells. Annals of the New York Academy of Sciences, 1999, 872, 233-242.	3.8	8
27	Filgrastim, fibrinolysis, and neovascularization. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 496-510.	2.7	4
28	The Effect of Fluence on Macrophage Kinetics, Oxidative Stress, and Wound Closure Using Real-Time In Vivo Imaging. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37, 45-52.	1.4	3
29	An automated quantitative image analysis pipeline of in vivo oxidative stress and macrophage kinetics. Journal of Biological Methods, 2018, 5, e101.	0.6	3
30	The New Zealand white rabbit animal model of acute radiation syndrome: hematopoietic and coagulation-based parameters by radiation dose following supportive care. International Journal of Radiation Biology, 2021, 97, S45-S62.	1.8	2
31	The Importance of Non-Human Primate Models for Pre-clinical Studies in Hematopoiesis. , 2010, , 767-787.		1

32 Clinical Aspects of Regenerative Medicine. , 2015, , 507-526.

0