Antti Koskela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1135090/publications.pdf

Version: 2024-02-01

567144 610775 26 928 15 24 citations h-index g-index papers 27 27 27 1597 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other. American Journal of Physiology - Endocrinology and Metabolism, 2022, , .	1.8	1
2	Perfluoroalkyl Substances and Abdominal Aortic Calcification. Journal of Occupational and Environmental Medicine, 2022, 64, 287-294.	0.9	3
3	Osteocyte- and late osteoblast-derived NOTUM reduces cortical bone mass in mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E967-E975.	1.8	6
4	Endocrine, metabolic and apical effects of in utero and lactational exposure to non-dioxin-like 2,2â \in 2,3,4,4â \in 2,5,5â \in 2-heptachlorobiphenyl (PCB 180): A postnatal follow-up study in rats. Reproductive Toxicology, 2021, 102, 109-127.	1.3	8
5	Acute fat loss does not affect bone mass. Scientific Reports, 2021, 11, 14177.	1.6	5
6	RSPO3 is important for trabecular bone and fracture risk in mice and humans. Nature Communications, 2021, 12, 4923.	5.8	19
7	Osteoblastâ€derived NOTUM reduces cortical bone mass in mice and the <i>NOTUM</i> locus is associated with bone mineral density in humans. FASEB Journal, 2019, 33, 11163-11179.	0.2	24
8	Androgen receptor SUMOylation regulates bone mass in male mice. Molecular and Cellular Endocrinology, 2019, 479, 117-122.	1.6	7
9	The androgen receptor is required for maintenance of bone mass in adult male mice. Molecular and Cellular Endocrinology, 2019, 479, 159-169.	1.6	19
10	Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice. Journal of Endocrinology, 2018, 237, 113-122.	1.2	32
11	Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: A pilot study. Environmental Research, 2018, 160, 314-321.	3.7	77
12	Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice. Journal of Endocrinology, 2018, 238, 13-23.	1.2	37
13	Clinically relevant doses of vitamin A decrease cortical bone mass in mice. Journal of Endocrinology, 2018, 239, 389-402.	1.2	17
14	Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E138-E144.	1.8	12
15	The Bone Sparing Effects of 2-Methoxyestradiol Are Mediated via Estrogen Receptor-α in Male Mice. Endocrinology, 2016, 157, 4200-4205.	1.4	5
16	Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice. Endocrinology, 2016, 157, 969-977.	1.4	20
17	SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E912-E918.	1.8	20
18	The bone-sparing effects of estrogen and WNT16 are independent of each other. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14972-14977.	3.3	50

#	Article	IF	CITATION
19	Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects. FASEB Journal, 2015, 29, 3193-3205.	0.2	21
20	Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nature Medicine, 2014, 20, 1279-1288.	15.2	303
21	Maternal beef and postweaning herring diets increase bone mineral density and strength in mouse offspring. Experimental Biology and Medicine, 2013, 238, 1362-1369.	1.1	2
22	Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2294-2299.	3.3	118
23	The role of activation functions 1 and 2 of estrogen receptor \hat{l} for the effects of estradiol and selective estrogen receptor modulators in male mice. Journal of Bone and Mineral Research, 2013, 28, 1117-1126.	3.1	23
24	Expression of the Hutchinson-Gilford Progeria Mutation during Osteoblast Development Results in Loss of Osteocytes, Irregular Mineralization, and Poor Biomechanical Properties. Journal of Biological Chemistry, 2012, 287, 33512-33522.	1.6	39
25	Estrogen receptor-α expression in neuronal cells affects bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 983-988.	3.3	37
26	Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts. Toxicology and Applied Pharmacology, 2012, 263, 210-217.	1.3	23