Antti Koskela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1135090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nature Medicine, 2014, 20, 1279-1288.	15.2	303
2	Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2294-2299.	3.3	118
3	Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: A pilot study. Environmental Research, 2018, 160, 314-321.	3.7	77
4	The bone-sparing effects of estrogen and WNT16 are independent of each other. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14972-14977.	3.3	50
5	Expression of the Hutchinson-Gilford Progeria Mutation during Osteoblast Development Results in Loss of Osteocytes, Irregular Mineralization, and Poor Biomechanical Properties. Journal of Biological Chemistry, 2012, 287, 33512-33522.	1.6	39
6	Estrogen receptor-α expression in neuronal cells affects bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 983-988.	3.3	37
7	Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice. Journal of Endocrinology, 2018, 238, 13-23.	1.2	37
8	Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice. Journal of Endocrinology, 2018, 237, 113-122.	1.2	32
9	Osteoblastâ€derived NOTUM reduces cortical bone mass in mice and the <i>NOTUM</i> locus is associated with bone mineral density in humans. FASEB Journal, 2019, 33, 11163-11179.	0.2	24
10	Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts. Toxicology and Applied Pharmacology, 2012, 263, 210-217.	1.3	23
11	The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice. Journal of Bone and Mineral Research, 2013, 28, 1117-1126.	3.1	23
12	Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects. FASEB Journal, 2015, 29, 3193-3205.	0.2	21
13	Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice. Endocrinology, 2016, 157, 969-977.	1.4	20
14	SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E912-E918.	1.8	20
15	RSPO3 is important for trabecular bone and fracture risk in mice and humans. Nature Communications, 2021, 12, 4923.	5.8	19
16	The androgen receptor is required for maintenance of bone mass in adult male mice. Molecular and Cellular Endocrinology, 2019, 479, 159-169.	1.6	19
17	Clinically relevant doses of vitamin A decrease cortical bone mass in mice. Journal of Endocrinology, 2018, 239, 389-402.	1.2	17
18	Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E138-E144.	1.8	12

ANTTI KOSKELA

#	Article	IF	CITATIONS
19	Endocrine, metabolic and apical effects of in utero and lactational exposure to non-dioxin-like 2,2′,3,4,4′,5,5′-heptachlorobiphenyl (PCB 180): A postnatal follow-up study in rats. Reproductive Toxicology, 2021, 102, 109-127.	1.3	8
20	Androgen receptor SUMOylation regulates bone mass in male mice. Molecular and Cellular Endocrinology, 2019, 479, 117-122.	1.6	7
21	Osteocyte- and late osteoblast-derived NOTUM reduces cortical bone mass in mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E967-E975.	1.8	6
22	The Bone Sparing Effects of 2-Methoxyestradiol Are Mediated via Estrogen Receptor-α in Male Mice. Endocrinology, 2016, 157, 4200-4205.	1.4	5
23	Acute fat loss does not affect bone mass. Scientific Reports, 2021, 11, 14177.	1.6	5
24	Perfluoroalkyl Substances and Abdominal Aortic Calcification. Journal of Occupational and Environmental Medicine, 2022, 64, 287-294.	0.9	3
25	Maternal beef and postweaning herring diets increase bone mineral density and strength in mouse offspring. Experimental Biology and Medicine, 2013, 238, 1362-1369.	1.1	2
26	Estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other. American Journal of Physiology - Endocrinology and Metabolism, 2022, , .	1.8	1