List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1135066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry, 1998, 22, 1179-1201.	2.8	1,510
2	Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended x-ray absorption fine structure spectroscopy. The Journal of Physical Chemistry, 1991, 95, 7448-7453.	2.9	310
3	Polymer-protected palladium–platinum bimetallic clusters: preparation, catalytic properties and structural considerations. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2537-2543.	1.7	273
4	Platinum Nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules. Journal of Physical Chemistry C, 2007, 111, 16278-16283.	3.1	169
5	Mechanistic consideration of formation of polymer-protected nanoscopic bimetallic clusters. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4111.	1.7	153
6	δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Scientific Reports, 2019, 9, 8441.	3.3	139
7	Polymer- and micelle-protected gold/platinum bimetallic systems. Preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods. Journal of Molecular Catalysis, 1993, 83, 167-181.	1.2	138
8	Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer. Langmuir, 2001, 17, 271-273.	3.5	135
9	Colloidal Dispersions of Palladium–Platinum Bimetallic Clusters Protected by Polymers. Preparation and Application to Catalysis. Chemistry Letters, 1989, 18, 1769-1772.	1.3	106
10	Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Sciences, 2009, 25, 339-346.	1.6	97
11	Discharge Performance of Zinc-Air Flow Batteries Under the Effects of Sodium Dodecyl Sulfate and Pluronic F-127. Scientific Reports, 2018, 8, 14909.	3.3	85
12	Metal Coating of DNA Molecules by Cationic, Metastable Gold Nanoparticles. Chemistry Letters, 2002, 31, 1172-1173.	1.3	78
13	The Influence of Dimethyl Sulfoxide as Electrolyte Additive on Anodic Dissolution of Alkaline Zinc-Air Flow Battery. Scientific Reports, 2019, 9, 14958.	3.3	75
14	Preparation of Highly Positively Charged Silver Nanoballs and Their Stability. Langmuir, 2000, 16, 5218-5220.	3.5	73
15	Ethanol as an electrolyte additive for alkaline zinc-air flow batteries. Scientific Reports, 2018, 8, 11273.	3.3	73
16	Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surface and Coatings Technology, 2011, 206, 955-958.	4.8	70
17	Control over Film Thickness of SnO2Ultrathin Film Selectively Deposited on a Patterned Self-Assembled Monolayer. Langmuir, 2002, 18, 10379-10385.	3.5	68
18	Investigation of Apatite Deposition onto Charged Surfaces in Aqueous Solutions Using a Quartz rystal Microbalance, Journal of the American Ceramic Society, 2003, 86, 782-790	3.8	65

TETSU YONEZAWA

#	Article	IF	CITATIONS
19	Growth of Closely Packed Layers of Gold Nanoparticles on an Aligned Ammonium Surface. Advanced Materials, 1998, 10, 414-416.	21.0	64
20	Deâ€Novo Synthesis of Goldâ€Nanoparticleâ€Embedded, Nitrogenâ€Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability. ChemCatChem, 2016, 8, 502-509.	3.7	62
21	Sputtering onto a liquid: interesting physical preparation method for multi-metallic nanoparticles. Science and Technology of Advanced Materials, 2018, 19, 883-898.	6.1	61
22	Formation of Uniform Fluorinated Gold Nanoparticles and Their Highly Ordered Hexagonally Packed Monolayer. Langmuir, 2001, 17, 2291-2293.	3.5	59
23	Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu ²⁺ -alkanolamine metallacycle compounds for electrically conductive layer formation. RSC Advances, 2016, 6, 12048-12052.	3.6	55
24	The preparation of copper fine particle paste and its application as the inner electrode material of a multilayered ceramic capacitor. Nanotechnology, 2008, 19, 145706.	2.6	54
25	195Pt NMR of Polymer-Protected Pt/Pd Bimetallic Catalysts. The Journal of Physical Chemistry, 1996, 100, 730-733.	2.9	51
26	Formation and Optical Properties of Fluorescent Gold Nanoparticles Obtained by Matrix Sputtering Method with Volatile Mercaptan Molecules in the Vacuum Chamber and Consideration of Their Structures. Langmuir, 2015, 31, 4323-4329.	3.5	51
27	Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters. Accounts of Chemical Research, 2017, 50, 2986-2995.	15.6	50
28	Experimental and theoretical studies of photoluminescence from Bi82+ and Bi53+ stabilized by [AlCl4]â~' in molecular crystals. Journal of Materials Chemistry, 2012, 22, 12837.	6.7	49
29	Molten matrix sputtering synthesis of water-soluble luminescent Au nanoparticles with a large Stokes shift. Chemical Communications, 2010, 46, 7211.	4.1	48
30	The Polymer-Protected Pd–Pt Bimetallic Clusters Having Catalytic Activity for Selective Hydrogenation of Diene. Preparation and EXAFS Investigation on the Structure. Chemistry Letters, 1990, 19, 815-818.	1.3	45
31	Self-Assembled One-Dimensional Arrays of Goldâ~'Dendron Nanocomposites. Journal of Physical Chemistry B, 2002, 106, 12097-12100.	2.6	44
32	Preparation of Optical Resins Containing Dispersed Gold Nanoparticles by the Matrix Sputtering Method. Angewandte Chemie - International Edition, 2011, 50, 703-705.	13.8	44
33	The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. Journal of Materials Chemistry C, 2015, 3, 5890-5895.	5.5	43
34	Binder-Free Centimeter-Long V2O5 Nanofibers on Carbon Cloth as Cathode Material for Zinc-Ion Batteries. Energies, 2020, 13, 31.	3.1	43
35	Highly stable rechargeable zinc-ion battery using dimethyl sulfoxide electrolyte. Materials Today Energy, 2021, 21, 100738.	4.7	43
36	Synthesis of binary solid solution $Cu\hat{\epsilon}$ "Pd nanoparticles by DMF reduction for enhanced photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 514-520.	5.5	42

#	Article	IF	CITATIONS
37	Size-Controlled Oxidation-Resistant Copper Fine Particles Covered by Biopolymer Nanoskin. Journal of Nanoscience and Nanotechnology, 2008, 8, 2468-2471.	0.9	41
38	Porous ZnV ₂ O ₄ Nanowire for Stable and High-Rate Lithium-Ion Battery Anodes. ACS Applied Nano Materials, 2019, 2, 4247-4256.	5.0	41
39	A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. Journal of Materials Chemistry C, 2016, 4, 2228-2234.	5.5	40
40	Copper film prepared from copper fine particle paste by laser sintering at room temperature: Influences of sintering atmosphere on the morphology and resistivity. Japanese Journal of Applied Physics, 2014, 53, 096501.	1.5	38
41	Fully Cationized Gold Clusters: Synthesis of Au ₂₅ (SR ⁺) ₁₈ . Journal of Physical Chemistry Letters, 2016, 7, 3718-3722.	4.6	38
42	High temperature oxidation event of gelatin nanoskin-coated copper fine particles observed by <i>in situ</i> TEM. AIP Advances, 2012, 2, .	1.3	37
43	Annealing induced a well-ordered single crystal δ-MnO2 and its electrochemical performance in zinc-ion battery. Scientific Reports, 2019, 9, 15107.	3.3	37
44	MnO2 Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries. International Journal of Molecular Sciences, 2020, 21, 4689.	4.1	37
45	Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive. International Journal of Molecular Sciences, 2020, 21, 7303.	4.1	36
46	Microwave-Induced Plasma-In-Liquid Process for Nanoparticle Production. Bulletin of the Chemical Society of Japan, 2018, 91, 1781-1798.	3.2	35
47	Benchmarking superfast electrodeposited bimetallic (Ni, Fe, Co, and Cu) hydroxides for oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 889, 161738.	5.5	35
48	Preparation of polymerâ€protected gold/platinum bimetallic clusters and their application to visible lightâ€induced hydrogen evolution. Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 281-295.	0.6	33
49	Thiolate–Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics. Scientific Reports, 2016, 6, 29928.	3.3	33
50	Au/Cu Bimetallic Nanoparticles via Double-Target Sputtering onto a Liquid Polymer. Langmuir, 2017, 33, 12389-12397.	3.5	33
51	Synthesis of Positively Charged Photoluminescent Bimetallic Au–Ag Nanoclusters by Double-Target Sputtering Method on a Biocompatible Polymer Matrix. Langmuir, 2017, 33, 9144-9150.	3.5	33
52	Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2â^' dimers. Journal of Materials Chemistry, 2012, 22, 20175.	6.7	32
53	Silver sputtering into a liquid matrix containing mercaptans: the systematic size control of silver nanoparticles in single nanometer-orders. New Journal of Chemistry, 2015, 39, 4227-4230.	2.8	32
54	β-Sn Nanorods with Active (001) Tip Induced LiF-Rich SEI Layer for Stable Anode Material in Lithium Ion Battery. ACS Applied Nano Materials, 2018, 1, 3509-3519.	5.0	32

#	Article	IF	CITATIONS
55	Silver Decorated Reduced Graphene Oxide as Electrocatalyst for Zinc–Air Batteries. Energies, 2020, 13, 462.	3.1	32
56	Synthesis and antibacterial properties of water-dispersible silver nanoparticles stabilized by metal–carbon σ-bonds. Applied Surface Science, 2012, 262, 76-80.	6.1	31
57	Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layers. RSC Advances, 2015, 5, 61290-61297.	3.6	31
58	Preparation of Au/Pd Bimetallic Nanoparticles by a Microwave-Induced Plasma in Liquid Process. Bulletin of the Chemical Society of Japan, 2017, 90, 279-285.	3.2	31
59	Preparation of Zinc Oxide Nanoparticles by Using Microwave-induced Plasma in Liquid. Chemistry Letters, 2010, 39, 783-785.	1.3	30
60	Double target sputtering into liquid: A new approach for preparation of Ag–Au alloy nanoparticles. Materials Letters, 2016, 171, 75-78.	2.6	30
61	Stabilizing structure of tertiary amine-protected rhodium colloid dispersions in chloroform. Journal of the Chemical Society Dalton Transactions, 1996, , 783.	1.1	29
62	Double-Wall TiO ₂ Nanotube Arrays: Enhanced Photocatalytic Activity and <i>In Situ</i> TEM Observations at High Temperature. ACS Applied Materials & Interfaces, 2014, 6, 19924-19932.	8.0	28
63	Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions. Scientific Reports, 2017, 7, 45150.	3.3	28
64	Preparation of Ag nanoparticles using hydrogen peroxide as a reducing agent. New Journal of Chemistry, 2018, 42, 14493-14501.	2.8	28
65	Use of decomposable polymer-coated submicron Cu particles with effective additive for production of highly conductive Cu films at low sintering temperature. Journal of Materials Chemistry C, 2017, 5, 1033-1041.	5.5	27
66	High-Capacity Dual-Electrolyte Aluminum–Air Battery with Circulating Methanol Anolyte. Energies, 2020, 13, 2275.	3.1	27
67	A durable rechargeable zinc-air battery via self-supported MnOx-S air electrode. Journal of Alloys and Compounds, 2021, 883, 160935.	5.5	27
68	Size-Tunable Alumina-Encapsulated Sn-Based Phase Change Materials for Thermal Energy Storage. ACS Applied Nano Materials, 2019, 2, 3752-3760.	5.0	26
69	Cationic Silver Nanoparticles Dispersed in Water Prepared from Insoluble Salts. Chemistry Letters, 2003, 32, 194-195.	1.3	25
70	Stabilization of the thermal decomposition process of self-reducible copper ion ink for direct printed conductive patterns. RSC Advances, 2017, 7, 25095-25100.	3.6	25
71	ZnV2O4: A potential anode material for sodium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 161-168.	5.3	25
72	Behavior of Cu nanoparticles ink under reductive calcination for fabrication of Cu conductive film. Thin Solid Films, 2012, 520, 2789-2793.	1.8	24

TETSU YONEZAWA

#	Article	IF	CITATIONS
73	Salmon milt DNA as a template for the mass production of Ag nanoparticles. Polymer Journal, 2014, 46, 36-41.	2.7	24
74	Sputtering synthesis and optical investigation of octadecanethiol-protected fluorescent Au nanoparticles. New Journal of Chemistry, 2015, 39, 5895-5897.	2.8	24
75	Au Nanoplasma as Efficient Hard X-ray Emission Source. ACS Photonics, 2016, 3, 2184-2190.	6.6	24
76	Kinetics of Cationic-Ligand-Exchange Reactions in Au ₂₅ Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 18142-18150.	3.1	24
77	Impact of Binder Functional Groups on Controlling Chemical Reactions to Improve Stability of Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7138-7147.	5.1	24
78	Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022, 23, 100632.	3.5	24
79	Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation. Optics Express, 2016, 24, 14781.	3.4	22
80	Yttrium (III) Recovery with D2EHPA in Pseudo-Emulsion Hollow Fiber Strip Dispersion System. Scientific Reports, 2018, 8, 7627.	3.3	22
81	Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries. Scientific Reports, 2018, 8, 8839.	3.3	22
82	Electrochemical exploration of the effects of calcination temperature of a mesoporous zinc vanadate anode material on the performance of Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 2653-2659.	6.0	22
83	Binder-Free α-MnO2 Nanowires on Carbon Cloth as Cathode Material for Zinc-Ion Batteries. International Journal of Molecular Sciences, 2020, 21, 3113.	4.1	22
84	Growth of sputtered silver nanoparticles on a liquid mercaptan matrix with controlled viscosity and sputter rate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 106-111.	4.7	21
85	Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage. Nanoscale Advances, 2021, 3, 4626-4645.	4.6	21
86	Synthesis of magnetic mesoporous titania colloidal crystals through evaporation induced self-assembly in emulsion as effective and recyclable photocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 27653-27657.	2.8	20
87	Plasma induced tungsten doping of TiO ₂ particles for enhancement of photocatalysis under visible light. Physical Chemistry Chemical Physics, 2015, 17, 24556-24559.	2.8	20
88	Water-dispersible fluorescent silver nanoparticles via sputtering deposition over liquid polymer using a very short thiol ligand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 25-29.	4.7	20
89	Preparation of Cationic Gold Nanoparticles and Their Monolayer Formation on an Anionic Amphiphile Layer. Chemistry Letters, 1999, 28, 1061-1062.	1.3	19
90	Preparation of naked silver nanoparticles in a TEM column and direct in situ observation of their structural changes at high temperature. Chemical Physics Letters, 2012, 537, 65-68.	2.6	19

#	Article	IF	CITATIONS
91	Preparation of Copper Nanoparticles in Liquid by Matrix Sputtering Process. Journal of Physics: Conference Series, 2013, 417, 012038.	0.4	19
92	Sub-2 nm Single-Crystal Pt Nanoparticles via Sputtering onto a Liquid Polymer. Langmuir, 2018, 34, 2876-2881.	3.5	19
93	Behavior of in vitro, in vivo and internal motion of micro/nano particles of titanium, titanium oxides and others. Journal of the Ceramic Society of Japan, 2008, 116, 1-5.	1.1	18
94	A Novel Physical Approach for Cationic–Thiolate Protected Fluorescent Gold Nanoparticles. Scientific Reports, 2015, 5, 15372.	3.3	18
95	Ligand Effect on the Formation of Gold Nanoparticles via Sputtering Deposition over a Liquid Matrix. Bulletin of the Chemical Society of Japan, 2016, 89, 1054-1056.	3.2	18
96	High Aspect Ratio and Post-Processing Free Silver Nanowires as Top Electrodes for Inverted-Structured Photodiodes. ACS Omega, 2019, 4, 13303-13308.	3.5	18
97	Effect of H2O2 on Au nanoparticle preparation using microwave-induced plasma in liquid. Materials Chemistry and Physics, 2017, 193, 7-12.	4.0	17
98	Synthesis of Au@Cu ₂ O Core–Shell Nanoparticles with Tunable Shell Thickness and Their Degradation Mechanism in Aqueous Solutions. Langmuir, 2020, 36, 3386-3392.	3.5	17
99	Matrix Sputtering into Liquid Mercaptan: From Blue-Emitting Copper Nanoclusters to Red-Emitting Copper Sulfide Nanoclusters. Langmuir, 2016, 32, 12159-12165.	3.5	16
100	Highly Correlated Size and Composition of Pt/Au Alloy Nanoparticles via Magnetron Sputtering onto Liquid. Langmuir, 2020, 36, 3004-3015.	3.5	16
101	Effect of Glass Transition Temperature of Stabilizing Polymer of Air-Stable Gelatin-Stabilized Copper Fine Particles during Redox Two-Step Low-Temperature Sintering Process. Bulletin of the Chemical Society of Japan, 2015, 88, 1755-1759.	3.2	15
102	Small Nanosized Oxygen-Deficient Tungsten Oxide Particles: Mechanistic Investigation with Controlled Plasma Generation in Water for Their Preparation. ACS Omega, 2017, 2, 5104-5110.	3.5	15
103	Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light. Nanomaterials, 2019, 9, 1071.	4.1	15
104	Preparation and Growth Mechanism of Pt/Cu Alloy Nanoparticles by Sputter Deposition onto a Liquid Polymer. Langmuir, 2019, 35, 8418-8427.	3.5	15
105	Synergistic Effect of the Oleic Acid and Oleylamine Mixed-Liquid Matrix on Particle Size and Stability of Sputtered Metal Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 18167-18176.	6.7	15
106	Selective and reactive hydration of nitriles to amides in water using silver nanoparticles stabilized by organic ligands. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	14
107	A liquid metal catalyst for the conversion of ethanol into graphitic carbon layers under an ultrasonic cavitation field. Chemical Communications, 2022, 58, 7741-7744.	4.1	14
108	Ball mill-assisted synthesis of NiFeCo-NC as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Journal of Alloys and Compounds, 2022, 922, 166287.	5.5	14

#	Article	IF	CITATIONS
109	Photosensitized Reduction of Carbon Dioxide in Solution Using Noble-Metal Clusters for Electron Transfer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1995, 50, 283-291.	1.5	13
110	Studies on heterogeneous degradation of polypropylene/talc composite: Effect of iron impurity on the degradation behavior. Journal of Applied Polymer Science, 2010, 115, 167-173.	2.6	13
111	Highly stable and blue-emitting copper nanocluster dispersion prepared by magnetron sputtering over liquid polymer matrix. RSC Advances, 2016, 6, 105030-105034.	3.6	13
112	Structural Control Parameters for Formation of Single-Crystalline β-Sn Nanorods in Organic Phase. Crystal Growth and Design, 2017, 17, 4554-4562.	3.0	13
113	Ligand free green plasma-in-liquid synthesis of Au/Ag alloy nanoparticles. New Journal of Chemistry, 2018, 42, 5680-5687.	2.8	13
114	Giant Enhancement of THz Wave Emission under Double-Pulse Excitation of Thin Water Flow. Applied Sciences (Switzerland), 2020, 10, 2031.	2.5	13
115	Ethylene Glycol/Ethanol Anolyte for High Capacity Alkaline Aluminum-Air Battery With Dual-Electrolyte Configuration. Frontiers in Energy Research, 2020, 8, .	2.3	13
116	Control of nanoparticles synthesized <i>via</i> vacuum sputter deposition onto liquids: a review. Soft Matter, 2021, 18, 19-47.	2.7	13
117	Proton-assisted low-temperature sintering of Cu fine particles stabilized by a proton-initiating degradable polymer. RSC Advances, 2015, 5, 102904-102910.	3.6	12
118	X-ray diffraction and high-resolution TEM observations of biopolymer nanoskin-covered metallic copper fine particles: preparative conditions and surface oxidation states. Physical Chemistry Chemical Physics, 2015, 17, 32511-32516.	2.8	12
119	Synthesis of cationically charged photoluminescent coinage metal nanoclusters by sputtering over a liquid polymer matrix. New Journal of Chemistry, 2017, 41, 6828-6833.	2.8	12
120	<scp>l</scp> -Arginine-Stabilized Highly Uniform Ag Nanoparticles Prepared in a Microwave-Induced Plasma-in-Liquid Process (MWPLP). Bulletin of the Chemical Society of Japan, 2018, 91, 362-367.	3.2	12
121	Basic [Au ₂₅ (SCH ₂ CH ₂ Py) ₁₈] ^{â^{-,}} â <na<sup>+ Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. Angewandte Chemie - International Edition, 2019, 58, 13411-13415</na<sup>	13.8	12
122	Green Synthesis of Size-Tunable Iron Oxides and Iron Nanoparticles in a Salt Matrix. ACS Sustainable Chemistry and Engineering, 2019, 7, 17697-17705.	6.7	12
123	Atomic-Scale Imaging of a Free-Standing Monolayer Clay Mineral Nanosheet Using Scanning Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 3357-3361.	4.6	12
124	Efficient iron–cobalt oxide bifunctional electrode catalysts in rechargeable high current density zinc–air batteries. Nanoscale, 2022, 14, 8012-8022.	5.6	12
125	Room-temperature immobilization of gold nanoparticles on Si(111) surface and their electron behaviour. Physical Chemistry Chemical Physics, 2008, 10, 6925.	2.8	11
126	Detailed investigation of the reduction process of cupric oxide (CuO) to form metallic copper fine particles with a unique diameter. Journal of Materials Science, 2010, 45, 6433-6439.	3.7	11

#	Article	IF	CITATIONS
127	Controlling an electrostatic repulsion by oppositely charged surfactants towards positively charged fluorescent gold nanoclusters. Physical Chemistry Chemical Physics, 2016, 18, 8773-8776.	2.8	11
128	Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system. Optics Express, 2016, 24, 19994.	3.4	11
129	Understanding the primary and secondary aggregation states of sputtered silver nanoparticles in thiolate matrix and their immobilization in resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 437-441.	4.7	11
130	Titanium oxide nanoparticle dispersions in a liquid monomer and solid polymer resins prepared by sputtering. New Journal of Chemistry, 2016, 40, 9337-9343.	2.8	11
131	Surface-Assisted Laser Desorption Ionization Mass Spectrometry (SALDI-MS) of Low-Molecular-Weight Medicines and Toxic Materials Using Commercial TiO2 Nanoparticles. Bulletin of the Chemical Society of Japan, 2016, 89, 346-353.	3.2	11
132	Sn Nanoparticles Confined in Porous Silica Spheres for Enhanced Thermal Cyclic Stability. ACS Applied Nano Materials, 2018, 1, 4073-4082.	5.0	11
133	Spatio-temporal control of THz emission. Communications Physics, 2022, 5, .	5.3	11
134	Near-infrared photoluminescence from molecular crystals containing tellurium. Journal of Materials Chemistry, 2012, 22, 24792.	6.7	10
135	Black TiO2 Nanoparticles by a Microwave-induced Plasma over Titanium Complex Aqueous Solution. Chemistry Letters, 2015, 44, 1327-1329.	1.3	10
136	Synthesis and fluorescence properties of columnar porous silicon: the influence of Cu-coating on the photoluminescence behaviour of hydrofluoric-acid-treated aged columnar porous silicon. New Journal of Chemistry, 2015, 39, 6267-6273.	2.8	10
137	Effects of Additives on the Preparation of Ag Nanoparticles Using the Microwaveâ€Induced Plasma in Liquid Process. ChemistrySelect, 2017, 2, 7873-7879.	1.5	10
138	Photoacoustic signal enhancements from gold nano-colloidal suspensions excited by a pair of time-delayed femtosecond pulses. Optics Express, 2017, 25, 19497.	3.4	10
139	Surfactant-stabilized copper paticles for low-temperature sintering: Paste preparation using a milling with small zirconia beads: Effect of pre-treatment with the disperse medium. Advanced Powder Technology, 2020, 31, 4570-4575.	4.1	10
140	Direct SEM Observation of Non-electroconductive TiOF2 Nanotube Arrays Prepared by Anodization Using an Ionic Liquid as a Visualizing Reagent. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 239-242.	3.7	9
141	Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst, The, 2013, 138, 995.	3.5	9
142	SEM observation of the live morphology of human red blood cells under high vacuum conditions using a novel RTIL. Surface and Interface Analysis, 2014, 46, 425-428.	1.8	9
143	Sputter Deposition toward Short Cationic Thiolated Fluorescent Gold Nanoclusters: Investigation of Their Unique Structural and Photophysical Characteristics Using High-Performance Liquid Chromatography. Langmuir, 2018, 34, 4024-4030.	3.5	9
144	Ultrarapid Cationization of Gold Nanoparticles via a Single-Step Ligand Exchange Reaction. Langmuir, 2018, 34, 10668-10672.	3.5	9

#	Article	IF	CITATIONS
145	Synthesis of composition-tunable Pd–Cu alloy nanoparticles by double target sputtering. New Journal of Chemistry, 2020, 44, 4704-4712.	2.8	9
146	Synthesis and fluorescence properties of a nanoisland-structured SiO _x /Cu _x O composite. Journal of Materials Chemistry C, 2015, 3, 8358-8363.	5.5	8
147	Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation. Beilstein Journal of Nanotechnology, 2018, 9, 2609-2617.	2.8	8
148	MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions. Optics Express, 2016, 24, 17050.	3.4	7
149	Reproducible shape control of single-crystal SnO micro particles. RSC Advances, 2016, 6, 26725-26733.	3.6	7
150	Charge Neutralization Strategy: A Novel Synthetic Approach to Fully Cationized Thiolateâ€Protected Au ₂₅ (SR ⁺) ₁₈ Clusters with Atomic Precision. ChemNanoMat, 2017, 3, 298-302.	2.8	7
151	Particle size tuning in scalable synthesis of anti-oxidized copper fine particles by polypeptide molecular weights. Advanced Powder Technology, 2017, 28, 1966-1971.	4.1	7
152	Real-Space Investigation of Energy Transfer through Electron Tomography. Journal of Physical Chemistry C, 2017, 121, 28395-28402.	3.1	7
153	Synthesis of Sn/Ag–Sn nanoparticles via room temperature galvanic reaction and diffusion. RSC Advances, 2019, 9, 21786-21792.	3.6	7
154	Monitor the Growth and Oxidation of Cu-nanoparticles in PEG after Sputtering. MRS Advances, 2019, 4, 305-309.	0.9	7
155	Pt/Ag Solid Solution Alloy Nanoparticles in Miscibility Gaps Synthesized by Cosputtering onto Liquid Polymers. Langmuir, 2021, 37, 6096-6105.	3.5	7
156	Copper Materials for Low Temperature Sintering. Materials Transactions, 2022, 63, 663-675.	1.2	7
157	Impact of Morphology and Transition Metal Doping of Vanadate Nanowires without Surface Modification on the Performance of Aqueous Zinc-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 728-734.	3.2	7
158	Comparison of Biodistribution and Biocompatibility of Gelatin-Coated Copper Nanoparticles and Naked Copper Oxide Nanoparticles. E-Journal of Surface Science and Nanotechnology, 2012, 10, 33-37.	0.4	6
159	One-pot preparation of cationic charged Pt nanoparticles by the autocatalytic hydrolysis of acetylthiocholine. New Journal of Chemistry, 2015, 39, 4214-4217.	2.8	6
160	Hard-templating synthesis of macroporous platinum microballs (MPtM). Materials Letters, 2016, 164, 488-492.	2.6	6
161	Preparation of Metal Nanoparticles and Their Application for Materials. , 2018, , 829-837.		6
162	Distinctive stability of a free-standing monolayer clay mineral nanosheet <i>via</i> transmission electron microscopy. Physical Chemistry Chemical Physics, 2020, 22, 25095-25102.	2.8	6

#	Article	IF	CITATIONS
163	The role of surface oxides and stabilising carboxylic acids of copper nanoparticles during low-temperature sintering. Materials Advances, 2022, 3, 4802-4812.	5.4	6
164	CoxNi1-xO-NiCo2O4/rGO Synergistic Bifunctional Electrocatalysts for High-Rate Rechargeable Zinc-Air Battery. Sustainable Energy and Fuels, 0, , .	4.9	6
165	Protecting Structure Analyses of Organic Molecule-protected Nanoscopic Noble Metal Clusters. Polymers for Advanced Technologies, 1996, 7, 645-651.	3.2	5
166	Preparation and Characterization of Polypeptide-Stabilized Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 1649-1654.	0.9	5
167	Internal distribution of micro-/nano-sized ceramics and metals particles in mice. Journal of the Ceramic Society of Japan, 2010, 118, 525-529.	1.1	5
168	In Situ Transmission Electron Microscopic Observation of Double-wall TiO2 Nanotube Arrays at High Temperature. Chemistry Letters, 2014, 43, 1514-1516.	1.3	5
169	Enhanced Terahertz Emission from Cu <i>x</i> O/Metal Thin Film Deposited on Columnar-Structured Porous Silicon. Bulletin of the Chemical Society of Japan, 2015, 88, 1385-1387.	3.2	5
170	Mesoporous Europium-Doped Titania Nanoparticles (Eu-MTNs) for Luminescence-Based Intracellular Bio-Imaging. Journal of Nanoscience and Nanotechnology, 2015, 15, 9802-9806.	0.9	5
171	Copper ion production using zeolite and application to MALDI MS of small molecules. International Journal of Mass Spectrometry, 2018, 434, 179-184.	1.5	5
172	Alginate-Stabilized Gold Nanoparticles Prepared Using the Microwave-Induced Plasma-in-Liquid Process with Long-Term Storage Stability for Potential Biomedical Applications. ACS Omega, 2022, 7, 6238-6247.	3.5	5
173	Two-Dimensional Patterning of Nanoparticles Using Dissipative Structures. Molecular Crystals and Liquid Crystals, 2001, 371, 123-126.	0.3	4
174	Effects of preparation conditions on the synthesis of nano-sized Ag metal particles by the wet-process using 3-mercapto-propionic acid. Research on Chemical Intermediates, 2008, 34, 641-647.	2.7	4
175	Fusion and Growth Behavior of Gold Nanoparticles Stabilized by Allylmercaptane. Macromolecular Symposia, 2008, 270, 82-87.	0.7	4
176	Size-controlled Preparation of Alkylamine-stabilized Copper Fine Particles from Cupric Oxide (CuO) Micro-particles. MRS Advances, 2019, 4, 413-418.	0.9	4
177	Direct Imaging of Individual Organic Molecules in Supramolecular Assembly Strongly Fixed via Multivalent Electrostatic Interactions. Journal of Physical Chemistry C, 2021, 125, 4917-4923.	3.1	4
178	In-situ observation of silver nanoparticle ink at high temperature. Bio-Medical Materials and Engineering, 2009, 19, 29-34.	0.6	3
179	Wet Preparation of Organic-Stabilizer-Free Urchin Structured Nickel Fine Particles and Their <i>In Situ</i> TEM Observation at High Temperatures. Materials Transactions, 2014, 55, 1474-1478.	1.2	3
180	Super Polycationic Molecular Compounds: Au144(SR+)60 Clusters. Journal of Physical Chemistry C, 2019, 123, 21768-21773.	3.1	3

TETSU YONEZAWA

#	Article	IF	CITATIONS
181	Basic [Au 25 (SCH 2 CH 2 Py) 18] â^ â‹Na + Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. Angewandte Chemie, 2019, 131, 13545-13549.	2.0	3
182	Observation of a 3D Network Nano-Structure of Carbon Nanotubes Scaffold for Cultivation. E-Journal of Surface Science and Nanotechnology, 2011, 9, 80-84.	0.4	3
183	THz wave emission from the Cu ₂ O/Cu interface under femtosecond laser irradiation. Applied Physics Express, 2021, 14, 012006.	2.4	3
184	Surface Menshutkin S _N 2 Reaction on Basic Gold Clusters Provides Novel Opportunities for the Cationization and Functionalization of Molecular Metal Clusters. Journal of Physical Chemistry Letters, 2021, 12, 11761-11765.	4.6	3
185	Preparation of Biopex-Supported Gold Nanoparticles as Potential Fiducial Markers for Image-Guided Radiation Therapy. ACS Applied Bio Materials, 2022, 5, 1259-1266.	4.6	3
186	Change in the Morphology of the Terrace Edges on Graphite Surfaces by Electrochemical Reduction. Chemistry Letters, 2012, 41, 187-188.	1.3	2
187	Deâ€Novo Synthesis of Gold-Nanoparticle-Embedded, Nitrogen-Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability. ChemCatChem, 2016, 8, 475-475.	3.7	2
188	Copper conductive patterns through spray-pyrolysis of copper-diethanolamine complex solution. PLoS ONE, 2018, 13, e0200084.	2.5	2
189	THz Wave Emission from ZnTe Nano-colloidal Aqueous Dispersion Irradiated by Femtosecond Laser. Chemistry Letters, 2020, 49, 597-600.	1.3	2
190	In situ TEM observation of liquid-state Sn nanoparticles vanishing in a SiO2 structure: a potential synthetic tool for controllable morphology evolution from core–shell to yolk–shell and hollow structures. Nanoscale Advances, 2020, 2, 1456-1464.	4.6	2
191	Green and effective synthesis of gold nanoparticles as injectable fiducial marker for real-time image gated proton therapy. Materials Advances, 0, , .	5.4	2
192	Cold-platinum bimetallic cluster catalysts for visible light-induced hydrogen production from water. Journal of Chemical Sciences, 1993, 105, 343-352.	1.5	1
193	Fabrication of ZnO Nanorods by Atmospheric-Pressure Solid-Source CVD Using Ethanol-Assisted Low-Temperature Vaporization. Bulletin of the Chemical Society of Japan, 2012, 85, 1287-1292.	3.2	1
194	Terahertz emission from Cu <inf>x</inf> O/Au thin film. , 2014, , .		1
195	TiO ₂ nanotube array with "multi-layer―walled structure and its vulnerability to water. Functional Materials Letters, 2017, 10, 1750019.	1.2	1
196	Non-oxidative copper nano and fine particles for electroconductive materials. , 2011, , .		0
197	Overlook of Gold Nanoparticles and Other Metal Nanoparticles Containing Gold. Oleoscience, 2014, 14, 11-15.	0.0	0
198	Influence of Surface Properties on SEM Observation for Carbon Nanotubes with Pretreatment Using Room Temperature Ionic Liquids. Journal of Solution Chemistry, 2014, 43, 1645-1654.	1.2	0

#	Article	IF	CITATIONS
199	Photochemical Reaction in Two Dimensional Assemblies of Functional Dyes on Inorganic Nanosheets. Kobunshi Ronbunshu, 2016, 73, 12-18.	0.2	0
200	Preparation of Substrates for Surface Assisted Laser Desorptionionization (SALDI) Using Laser Ablation in Liquids. The Review of Laser Engineering, 2012, 40, 111.	0.0	0
201	Preparation of Metal Nanoparticles by Microwave-Induced Plasma in Liquid. Journal of Smart Processing, 2017, 6, 166-170.	0.1	0
202	Development of New Metal Latent Heat Storage System. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2018, 26, 140-144.	0.0	0
203	Surface Design and Functional Prediction of Inorganic Nanoparticles for Electronic Material Applications. Journal of the Society of Powder Technology, Japan, 2018, 55, 325-333.	0.1	0
204	Dispersion of Copper Fine Particles for Conductive Inks and Pastes. Journal of the Japan Society of Colour Material, 2019, 92, 205-209.	0.1	0
205	Cross-sectional STEM observation of nanoparticle-attached silicon wafer: specimen prepared by focused ion-beam. Journal of Nanoscience and Nanotechnology, 2008, 8, 1518-22.	0.9	0
206	Anisotropic Growth of Copper Nanorods Mediated by Cl [–] Ions. ACS Omega, 2022, 7, 7414-7420.	3.5	0