Peter Fajfar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11349570/publications.pdf Version: 2024-02-01

DETED FAIEAD

#	Article	IF	CITATIONS
1	A Nonlinear Analysis Method for Performance-Based Seismic Design. Earthquake Spectra, 2000, 16, 573-592.	3.1	897
2	Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28, 979-993.	4.4	638
3	Consistent inelastic design spectra: Strength and displacement. Earthquake Engineering and Structural Dynamics, 1994, 23, 507-521.	4.4	365
4	The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame — a deterministic assessment. Engineering Structures, 2008, 30, 1991-2001.	5.3	281
5	Equivalent ductility factors, taking into account low-cycle fatigue. Earthquake Engineering and Structural Dynamics, 1992, 21, 837-848.	4.4	193
6	Consistent inelastic design spectra: Hysteretic and input energy. Earthquake Engineering and Structural Dynamics, 1994, 23, 523-537.	4.4	180
7	Simplified non-linear seismic analysis of infilled reinforced concrete frames. Earthquake Engineering and Structural Dynamics, 2005, 34, 49-66.	4.4	153
8	The extended N2 method considering higher mode effects in both plan and elevation. Bulletin of Earthquake Engineering, 2012, 10, 695-715.	4.1	140
9	TORSIONAL EFFECTS IN THE PUSHOVER-BASED SEISMIC ANALYSIS OF BUILDINGS. Journal of Earthquake Engineering, 2005, 9, 831-854.	2.5	139
10	A measure of earthquake motion capacity to damage medium-period structures. Soil Dynamics and Earthquake Engineering, 1990, 9, 236-242.	3.8	136
11	The extended N2 method taking into account higher mode effects in elevation. Earthquake Engineering and Structural Dynamics, 2011, 40, 1571-1589.	4.4	108
12	SOFT STOREY EFFECTS IN UNIFORMLY INFILLED REINFORCED CONCRETE FRAMES. Journal of Earthquake Engineering, 2001, 5, 1-12.	2.5	94
13	Epoxy-bonded La–Fe–Co–Si magnetocaloric plates. Journal of Magnetism and Magnetic Materials, 2015, 375, 65-73.	2.3	82
14	On the inelastic torsional response of single-storey structures under bi-axial excitation. Earthquake Engineering and Structural Dynamics, 2005, 34, 931-941.	4.4	79
15	The effect of masonry infills on the seismic response of a four storey reinforced concrete frame—a probabilistic assessment. Engineering Structures, 2008, 30, 3186-3192.	5.3	79
16	SIMPLE PUSH-OVER ANALYSIS OF ASYMMETRIC BUILDINGS. Earthquake Engineering and Structural Dynamics, 1997, 26, 233-249.	4.4	76
17	Code-oriented floor acceleration spectra for building structures. Bulletin of Earthquake Engineering, 2017, 15, 3013-3026.	4.1	72
18	A method for the direct estimation of floor acceleration spectra for elastic and inelastic MDOF structures. Earthquake Engineering and Structural Dynamics, 2016, 45, 2495-2511.	4.4	71

Peter Fajfar

#	Article	IF	CITATIONS
19	A practiceâ€oriented estimation of the failure probability of building structures. Earthquake Engineering and Structural Dynamics, 2012, 41, 531-547.	4.4	70
20	Inelastic spectra for infilled reinforced concrete frames. Earthquake Engineering and Structural Dynamics, 2004, 33, 1395-1416.	4.4	69
21	Seismic demand in medium- and long-period structures. Earthquake Engineering and Structural Dynamics, 1989, 18, 1133-1144.	4.4	68
22	Mathematical modelling of an infilled RC frame structure based on the results of pseudo-dynamic tests. Earthquake Engineering and Structural Dynamics, 2002, 31, 1215-1230.	4.4	68
23	Title is missing!. Journal of Earthquake Engineering, 2005, 9, 831.	2.5	68
24	On the inelastic seismic response of asymmetric buildings under bi-axial excitation. Earthquake Engineering and Structural Dynamics, 2005, 34, 943-963.	4.4	65
25	Simplified probabilistic seismic performance assessment of plan-asymmetric buildings. Earthquake Engineering and Structural Dynamics, 2007, 36, 2021-2041.	4.4	60
26	A method for the direct determination of approximate floor response spectra for SDOF inelastic structures. Bulletin of Earthquake Engineering, 2015, 13, 1405-1424.	4.1	59
27	Analysis in seismic provisions for buildings: past, present and future. Bulletin of Earthquake Engineering, 2018, 16, 2567-2608.	4.1	59
28	Flexural deformation capacity of rectangular RC columns determined by the CAE method. Earthquake Engineering and Structural Dynamics, 2006, 35, 1453-1470.	4.4	57
29	Seismic evaluation of an existing complex RC building. Bulletin of Earthquake Engineering, 2010, 8, 363-385.	4.1	46
30	Pre- and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building. Earthquake Engineering and Structural Dynamics, 2006, 35, 1359-1379.	4.4	42
31	Approximate seismic risk assessment of building structures with explicit consideration of uncertainties. Earthquake Engineering and Structural Dynamics, 2014, 43, 1483-1502.	4.4	37
32	Seismic response of a RC frame building designed according to old and modern practices. Bulletin of Earthquake Engineering, 2009, 7, 779-799.	4.1	27
33	Simplified R-Factor Relationships for Strong Ground Motions. Earthquake Spectra, 2003, 19, 25-45.	3.1	25
34	Dispersions for the pushoverâ€based risk assessment of reinforced concrete frames and cantilever walls. Earthquake Engineering and Structural Dynamics, 2016, 45, 2163-2183.	4.4	19
35	Hysteretic energy dissipation capacity and the cyclic to monotonic drift ratio for rectangular RC columns in flexure. Earthquake Engineering and Structural Dynamics, 2009, 38, 907-928.	4.4	16
36	A NON-PARAMETRIC APPROACH TO ATTENUATION RELATIONS. Journal of Earthquake Engineering, 1997, 1, 319-340.	2.5	15

Peter Fajfar

#	Article	IF	CITATIONS
37	Groundâ€motion prediction by a nonâ€parametric approach. Earthquake Engineering and Structural Dynamics, 2010, 39, 1395-1416.	4.4	14
38	Microstructure and Texture Evolution with Relation to Mechanical Properties of Compared Symmetrically and Asymmetrically Cold Rolled Aluminum Alloy. Metals, 2020, 10, 156.	2.3	14
39	Analysis in Seismic Provisions for Buildings: Past, Present and Future. Geotechnical, Geological and Earthquake Engineering, 2018, , 1-49.	0.2	11
40	Prediction of the force–drift envelope for RC columns in flexure by the CAE method. Earthquake Engineering and Structural Dynamics, 2007, 36, 2345-2363.	4.4	10
41	Seismic hazard reassessment of an existing NPP in Slovenia. Nuclear Engineering and Design, 1997, 175, 215-226.	1.7	7
42	A Practice-Oriented Approach for Probabilistic Seismic Assessment of Building Structures. Geotechnical, Geological and Earthquake Engineering, 2010, , 225-233.	0.2	7
43	Prediction of the seismic capacity of RC structural walls by non-parametric multidimensional regression. Earthquake Engineering and Structural Dynamics, 1994, 23, 1139-1155.	4.4	6
44	Title is missing!. Journal of Earthquake Engineering, 1997, 1, 319.	2.5	6
45	Capacity spectrum method based on inelastic demand spectra. , 1999, 28, 979.		4
46	Prediction of site factors by a nonâ€parametric approach. Earthquake Engineering and Structural Dynamics, 2014, 43, 1743-1761.	4.4	3
47	Pushover-Based Analysis in Performance-Based Seismic Engineering – A View from Europe. Geotechnical, Geological and Earthquake Engineering, 2014, , 265-277.	0.2	1
48	Seismic Assessment of RC Frame Buildings. Geotechnical, Geological and Earthquake Engineering, 2016, , 89-97.	0.2	1
49	A Practical Nonlinear Method for Seismic Performance Evaluation. , 2000, , 1.		0
50	R. Riddell's Discussion of "Simplified R-Factor Relationships for Strong Ground Motions― Earthquake Spectra, 2004, 20, 281-282.	3.1	0
51	Helmut Krawinkler: a tribute. Earthquake Engineering and Structural Dynamics, 2012, 41, 1413-1414.	4.4	0