List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11349472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Scientific Reports, 2015, 5, 15956.	1.6	265
2	Geographically weighted regression based methods for merging satellite and gauge precipitation. Journal of Hydrology, 2018, 558, 275-289.	2.3	181
3	Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agricultural and Forest Meteorology, 2018, 263, 118-129.	1.9	111
4	Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing, 2009, 72, 2873-2883.	3.5	105
5	Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. Journal of Hydrology, 2019, 574, 903-914.	2.3	104
6	Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Science of the Total Environment, 2016, 573, 817-825.	3.9	101
7	Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. Journal of Hydrology, 2014, 517, 1035-1048.	2.3	94
8	Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stochastic Environmental Research and Risk Assessment, 2013, 27, 401-421.	1.9	93
9	On continental-scale hydrologic simulations with a coupled hydrologic model. Journal of Hydrology, 2006, 331, 110-124.	2.3	91
10	Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1781-1795.	1.9	89
11	Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4049-4068.	1.2	88
12	Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections. Agricultural Water Management, 2014, 146, 249-261.	2.4	85
13	Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Climatic Change, 2012, 114, 301-317.	1.7	82
14	Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Advances in Water Resources, 2011, 34, 395-406.	1.7	81
15	Characterizing the changing behaviours of precipitation concentration in the Yangtze River Basin, China. Hydrological Processes, 2013, 27, 3375-3393.	1.1	79
16	The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration. Journal of Hydrology, 2016, 541, 1042-1056.	2.3	79
17	Patterns and assembly processes of planktonic and sedimentary bacterial community differ along a trophic gradient in freshwater lakes. Ecological Indicators, 2019, 106, 105491.	2.6	78
18	Climate change and water storage variability over an arid endorheic region. Journal of Hydrology, 2015, 529, 330-339.	2.3	74

#	Article	IF	CITATIONS
19	Fully coupled atmosphericâ€hydrological modeling at regional and longâ€term scales: Development, application, and analysis of WRFâ€HMS. Water Resources Research, 2016, 52, 3187-3211.	1.7	72
20	Impact of climate change on flood and drought events in Huaihe River Basin, China. Hydrology Research, 2012, 43, 14-22.	1.1	69
21	Impact of projected climate change on the hydrology in the headwaters of the Yellow River basin. Hydrological Processes, 2015, 29, 4379-4397.	1.1	69
22	A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin. Environmental Modelling and Software, 2020, 128, 104704.	1.9	69
23	A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. Journal of Hydrology, 2012, 468-469, 47-62.	2.3	67
24	Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrological Processes, 2012, 26, 3510-3523.	1.1	65
25	Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. Journal of Hydrology, 2018, 559, 471-485.	2.3	63
26	Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agricultural and Forest Meteorology, 2017, 232, 89-105.	1.9	62
27	Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. Science of the Total Environment, 2020, 740, 140010.	3.9	62
28	Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global and Planetary Change, 2014, 118, 69-84.	1.6	60
29	Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1345-1370.	1.9	60
30	Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stochastic Environmental Research and Risk Assessment, 2015, 29, 693-707.	1.9	60
31	A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecological Indicators, 2017, 72, 870-880.	2.6	60
32	Uncertainty Intercomparison of Different Hydrological Models in Simulating Extreme Flows. Water Resources Management, 2013, 27, 1393-1409.	1.9	57
33	Effects of Climate Variations and Human Activities on Runoff in the Zoige Alpine Wetland in the Eastern Edge of the Tibetan Plateau. Journal of Hydrologic Engineering - ASCE, 2014, 19, 1026-1035.	0.8	56
34	How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?. Journal of Hydrology, 2013, 479, 75-85.	2.3	55
35	Pyrosequencing analysis of bacterial community and assembly in activated sludge samples from different geographic regions in China. Applied Microbiology and Biotechnology, 2014, 98, 9119-9128.	1.7	55
36	Comparison of measured and simulated water storage in dryland terraces of the Loess Plateau, China. Agricultural Water Management, 2009, 96, 299-306.	2.4	54

#	Article	IF	CITATIONS
37	Changes of climate extremes in a typical arid zone: Observations and multimodel ensemble projections. Journal of Geophysical Research, 2011, 116, .	3.3	53
38	Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Global and Planetary Change, 2014, 115, 1-15.	1.6	53
39	Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiology Ecology, 2017, 93, .	1.3	52
40	Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage. Global and Planetary Change, 2013, 109, 30-37.	1.6	51
41	Impact of initial soil moisture anomalies on climate mean and extremes over Asia. Journal of Geophysical Research D: Atmospheres, 2014, 119, 529-545.	1.2	51
42	The heterogeneity of composition and assembly processes of the microbial community between different nutrient loading lake zones in Taihu Lake. Applied Microbiology and Biotechnology, 2017, 101, 5913-5923.	1.7	49
43	Using the SPEI to Assess Recent Climate Change in the Yarlung Zangbo River Basin, South Tibet. Water (Switzerland), 2015, 7, 5474-5486.	1.2	47
44	Contrasting Network Features between Free-Living and Particle-Attached Bacterial Communities in Taihu Lake. Microbial Ecology, 2018, 76, 303-313.	1.4	46
45	Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnology and Oceanography, 2020, 65, S38.	1.6	46
46	Analysis and Simulation of Human Activity Impact on Streamflow in the Huaihe River Basin with a Large-Scale Hydrologic Model. Journal of Hydrometeorology, 2010, 11, 810-821.	0.7	45
47	Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1-16.	1.9	45
48	Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stochastic Environmental Research and Risk Assessment, 2012, 26, 405-418.	1.9	43
49	Assessing CMIP5 general circulation model simulations of precipitation and temperature over China. International Journal of Climatology, 2015, 35, 2431-2440.	1.5	43
50	Automated calibration applied to watershed-scale flow simulations. Hydrological Processes, 1999, 13, 191-209.	1.1	42
51	Climate change driven water budget dynamics of a Tibetan inland lake. Global and Planetary Change, 2017, 150, 70-80.	1.6	42
52	A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. Journal of Hydrology, 2012, 475, 53-64.	2.3	40
53	Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China. Environmental Science and Pollution Research, 2017, 24, 4029-4039.	2.7	40
54	Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: A network analysis. Scientific Reports, 2018, 8, 8890.	1.6	40

#	Article	IF	CITATIONS
55	Estimating the Effects of Climatic Variability and Human Activities on Streamflow in the Hutuo River Basin, China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 422-430.	0.8	39
56	Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering. Journal of Hydrology, 2016, 538, 243-255.	2.3	39
57	Influences of the south–to-north water diversion project and virtual water flows on regional water resources considering both water quantity and quality. Journal of Cleaner Production, 2020, 244, 118920.	4.6	39
58	Contrasting Patterns in Diversity and Community Assembly of Phragmites australis Root-Associated Bacterial Communities from Different Seasons. Applied and Environmental Microbiology, 2020, 86, .	1.4	39
59	Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model. Hydrological Processes, 2018, 32, 2096-2117.	1.1	38
60	APPLICATION OF AN INTEGRATED BASIN-SCALE HYDROLOGIC MODEL TO SIMULATE SURFACE-WATER AND GROUND-WATER INTERACTIONS. Journal of the American Water Resources Association, 1998, 34, 409-425.	1.0	36
61	Performance of SMAP, AMSR-E and LAI for weekly agricultural drought forecasting over continental United States. Journal of Hydrology, 2017, 553, 88-104.	2.3	36
62	Diagnosing the Strength of Land–Atmosphere Coupling at Subseasonal to Seasonal Time Scales in Asia. Journal of Hydrometeorology, 2014, 15, 320-339.	0.7	35
63	Reference evapotranspiration trends from 1980 to 2012 and their attribution to meteorological drivers in the three-river source region, China. International Journal of Climatology, 2016, 36, 3759-3769.	1.5	35
64	Temperature Responses of Ammonia-Oxidizing Prokaryotes in Freshwater Sediment Microcosms. PLoS ONE, 2014, 9, e100653.	1.1	35
65	Pacific and Atlantic Ocean influence on the spatiotemporal variability of heavy precipitation in the western United States. Global and Planetary Change, 2013, 109, 38-45.	1.6	34
66	Projected Changes in Hydrological Extremes in the Yangtze River Basin with an Ensemble of Regional Climate Simulations. Water (Switzerland), 2018, 10, 1279.	1.2	33
67	Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Climate Dynamics, 2020, 54, 3781-3801.	1.7	33
68	Evaluation of drought and wetness episodes in a cold region (Northeast China) since 1898 with different drought indices. Natural Hazards, 2014, 71, 2063-2085.	1.6	32
69	Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1117-1133.	1.9	31
70	Comparing three models to estimate transpiration of desert shrubs. Journal of Hydrology, 2017, 550, 603-615.	2.3	31
71	Simulating canopy conductance of the Haloxylon ammodendron shrubland in an arid inland river basin of northwest China. Agricultural and Forest Meteorology, 2018, 249, 22-34.	1.9	31
72	Conditions for lateral downslope unsaturated flow and effects of slope angle on soil moisture movement. Journal of Hydrology, 2013, 486, 321-333.	2.3	30

#	Article	IF	CITATIONS
73	Climate change and probabilistic scenario of streamflow extremes in an alpine region. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8535-8551.	1.2	30
74	High-resolution ensemble projections and uncertainty assessment of regional climate change over China in CORDEX East Asia. Hydrology and Earth System Sciences, 2018, 22, 3087-3103.	1.9	30
75	Effect of Gravel-Sand Mulch on Soil Water and Temperature in the Semiarid Loess Region of Northwest China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1484-1494.	0.8	29
76	On evaluating the spatial-temporal variation of soil moisture in the Susquehanna River Basin. Water Resources Research, 2001, 37, 1313-1326.	1.7	28
77	Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data. Journal of Hydrology, 2021, 603, 126929.	2.3	28
78	Climate-induced hydrological impact mitigated by a high-density reservoir network in the Poyang Lake Basin. Journal of Hydrology, 2019, 579, 124148.	2.3	25
79	A system dynamics simulation approach for environmentally friendly operation of a reservoir system. Journal of Hydrology, 2020, 587, 124971.	2.3	25
80	The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States. Water Resources Management, 2016, 30, 4807-4821.	1.9	24
81	Uncertainty analysis of downscaling methods in assessing the influence of climate change on hydrology. Stochastic Environmental Research and Risk Assessment, 2014, 28, 991-1010.	1.9	23
82	Performance of the WRF model in simulating intense precipitation events over the Hanjiang River Basin, China – A multi-physics ensemble approach. Atmospheric Research, 2021, 248, 105206.	1.8	23
83	Longâ€ŧerm effects of revegetation on soil hydrological processes in vegetationâ€stabilized desert ecosystems. Hydrological Processes, 2010, 24, 87-95.	1.1	22
84	Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2676-2688.	1.2	22
85	Optimal parameters for the Green-Ampt infiltration model under rainfall conditions. Journal of Hydrology and Hydromechanics, 2015, 63, 93-101.	0.7	22
86	Modeling rainfall infiltration on hillslopes using Flux-concentration relation and time compression approximation. Journal of Hydrology, 2018, 557, 243-253.	2.3	22
87	Elevation-dependent response of vegetation dynamics to climate change in a cold mountainous region. Environmental Research Letters, 2020, 15, 094005.	2.2	22
88	Spatial and Temporal Scale Effect in Simulating Hydrologic Processes in a Watershed. Journal of Hydrologic Engineering - ASCE, 2014, 19, 99-107.	0.8	21
89	Changes of storm properties in the United States: Observations and multimodel ensemble projections. Global and Planetary Change, 2016, 142, 41-52.	1.6	21
90	Hydrological impact of a reservoir network in the upper Gan River Basin, China. Hydrological Processes, 2019, 33, 1709-1723.	1.1	21

#	Article	IF	CITATIONS
91	Heat Wave Variations Across China Tied to Global SST Modes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031612.	1.2	21
92	Oneâ€dimensional soil temperature simulation with <scp>C</scp> ommon <scp>L</scp> and <scp>M</scp> odel by assimilating in situ observations and <scp>MODIS</scp> <scp>LST</scp> with the ensemble particle filter. Water Resources Research, 2014, 50, 6950-6965.	1.7	20
93	Assessment on the Effect of Climate Change on Streamflow in the Source Region of the Yangtze River, China. Water (Switzerland), 2017, 9, 70.	1.2	20
94	Water resources management in a reservoir-regulated basin: Implications of reservoir network layout on streamflow and hydrologic alteration. Journal of Hydrology, 2020, 586, 124903.	2.3	20
95	Model Estimates of China's Terrestrial Water Storage Variation Due To Reservoir Operation. Water Resources Research, 2022, 58, .	1.7	20
96	Assessment of radionuclide transport uncertainty in the unsaturated zone of Yucca Mountain. Advances in Water Resources, 2007, 30, 118-134.	1.7	19
97	Hydrologic Simulations with Artificial Neural Networks. , 2007, , .		18
98	Spatiotemporal characteristics of regional extreme precipitation in Yangtze River basin. Journal of Hydrology, 2021, 603, 126910.	2.3	18
99	Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania. Hydrological Processes, 2000, 14, 941-956.	1.1	17
100	Using a <i>H</i> _{â^ž} filter assimilation procedure to estimate root zone soil water content. Hydrological Processes, 2010, 24, 3648-3660.	1.1	17
101	Review of Advances in Hydrologic Science in China in the Last Decades: Impact Study of Climate Change and Human Activities. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1380-1384.	0.8	17
102	Drought projection based on a hybrid drought index using Artificial Neural Networks. Hydrological Processes, 2015, 29, 2635-2648.	1.1	17
103	Distinct successional patterns and processes of freeâ€living and particleâ€attached bacterial communities throughout a phytoplankton bloom. Freshwater Biology, 2020, 65, 1363-1375.	1.2	17
104	Altered drought propagation under the influence of reservoir regulation. Journal of Hydrology, 2021, 603, 127049.	2.3	17
105	Modeling the river-basin response to single-storm events simulated by a mesoscale meteorological model at various resolutions. Journal of Geophysical Research, 1999, 104, 19675-19689.	3.3	16
106	An openâ€channel flume study of flow characteristics through a combined layer of submerged and emerged flexible vegetation. Ecohydrology, 2014, 7, 633-647.	1.1	16
107	Response of Hydrologic Processes to Future Climate Changes in the Yangtze River Basin. Journal of Hydrologic Engineering - ASCE, 2014, 19, 211-222.	0.8	16
108	Habitats and seasons differentiate the assembly of bacterial communities along a trophic gradient of freshwater lakes. Freshwater Biology, 2021, 66, 1515-1529.	1.2	16

#	Article	IF	CITATIONS
109	Simulations on soil water variation in arid regions. Journal of Hydrology, 2003, 275, 162-181.	2.3	15
110	A coupled modeling approach to predict water quality in Lake Taihu, China: linkage to climate change projections. Journal of Freshwater Ecology, 2015, 30, 59-73.	0.5	15
111	Diversity and composition of bacterial community in the rhizosphere sediments of submerged macrophytes revealed by 454 pyrosequencing. Annals of Microbiology, 2017, 67, 313-319.	1.1	15
112	Impact of intermittent turbulent bursts on sediment resuspension and internal nutrient release in Lake Taihu, China. Environmental Science and Pollution Research, 2019, 26, 16519-16528.	2.7	15
113	Effects of Vegetation Cover on Hydrological Processes in a Large Region: Huaihe River Basin, China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1477-1483.	0.8	14
114	Investigating soil moisture sensitivity to precipitation and evapotranspiration errors using SiB2 model and ensemble Kalman filter. Stochastic Environmental Research and Risk Assessment, 2014, 28, 681-693.	1.9	14
115	Assessing the impact of climate change on flood in an alpine catchment using multiple hydrological models. Stochastic Environmental Research and Risk Assessment, 2015, 29, 2143-2158.	1.9	14
116	Evaluation of soil moistureâ€precipitation feedback at different time scales over Asia. International Journal of Climatology, 2017, 37, 3619-3629.	1.5	14
117	Multiâ€scale assimilation of root zone soil water predictions. Hydrological Processes, 2011, 25, 3158-3172.	1.1	13
118	Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble. Advances in Meteorology, 2014, 2014, 1-10.	0.6	13
119	Co-association of Two nir Denitrifiers Under the Influence of Emergent Macrophytes. Microbial Ecology, 2020, 80, 809-821.	1.4	13
120	Retrospective simulation of a storm event: A first step in coupled climate/hydrologic modeling. Geophysical Research Letters, 2000, 27, 2561-2564.	1.5	12
121	Multimodel ensemble projections of future climate extreme changes in the Haihe River Basin, China. Theoretical and Applied Climatology, 2014, 118, 405-417.	1.3	12
122	Application of vector and parallel supercomputers to ground-water flow modeling. Computers and Geosciences, 1997, 23, 917-927.	2.0	11
123	Bargaining Model of Synergistic Revenue Allocation for the Joint Operations of a Multi-Stakeholder Cascade Reservoir System. Water Resources Management, 2018, 32, 4625-4642.	1.9	11
124	Analysis of Blue and Green Water Consumption at the Irrigation District Scale. Sustainability, 2018, 10, 305.	1.6	11
125	Evaluation of hydroclimatic variables for maize yield estimation using crop model and remotely sensed data assimilation. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1283-1295.	1.9	11
126	Evaluating Coupled Water, Vapor, and Heat Flows and Their Influence on Moisture Dynamics in Arid Regions. Journal of Hydrologic Engineering - ASCE, 2012, 17, 565-577.	0.8	10

#	Article	IF	CITATIONS
127	Evaluating Ensemble Kalman, Particle, and Ensemble Particle Filters through Soil Temperature Prediction. Journal of Hydrologic Engineering - ASCE, 2014, 19, 04014027.	0.8	10
128	Abundance and community composition of ammonia oxidizers in rhizosphere sediment of two submerged macrophytes. Journal of Freshwater Ecology, 2016, 31, 407-419.	0.5	10
129	Prospective scenarios of the saltwater intrusion in an estuary under climate change context using Bayesian neural networks. Stochastic Environmental Research and Risk Assessment, 2017, 31, 981-991.	1.9	10
130	The Multi-Scale Temporal Variability of Extreme Precipitation in the Source Region of the Yellow River. Water (Switzerland), 2019, 11, 92.	1.2	10
131	Composition and assembly of bacterial communities in surface and deeper sediments from aquaculture-influenced sites in Eastern Lake Taihu, China. Aquatic Sciences, 2020, 82, 1.	0.6	10
132	Effects of urbanisation on regional water consumption in China. Journal of Hydrology, 2022, 609, 127721.	2.3	10
133	The Impact of Assumed Error Variances on Surface Soil Moisture and Snow Depth Hydrologic Data Assimilation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 5116-5129.	2.3	9
134	Diagnosing the strength of soil temperature in the land atmosphere interactions over Asia based on RegCM4 model. Global and Planetary Change, 2015, 130, 7-21.	1.6	9
135	Evaluation of TOPMODEL-Based Land Surface–Atmosphere Transfer Scheme (TOPLATS) through a Soil Moisture Simulation. Earth Interactions, 2018, 22, 1-19.	0.7	9
136	Evaluating Soil Moisture Predictions Based on Ensemble Kalman Filter and SiB2 Model. Journal of Meteorological Research, 2019, 33, 190-205.	0.9	9
137	Composition and co-occurrence patterns of Phragmites australis rhizosphere bacterial community. Aquatic Ecology, 2021, 55, 695-710.	0.7	9
138	STORMFLOW SIMULATION USING A GEOGRAPHICAL INFORMATION SYSTEM WITH A DISTRIBUTED APPROACH1. Journal of the American Water Resources Association, 2001, 37, 957-971.	1.0	8
139	The Mass and Energy Exchange of a Tibetan Glacier: Distributed Modeling and Climate Sensitivity. Journal of the American Water Resources Association, 2015, 51, 1088-1100.	1.0	8
140	System Dynamics Simulation Model for Flood Management of the Three Gorges Reservoir. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	8
141	Role of reservoir regulation and groundwater feedback in a simulated groundâ€soilâ€vegetation continuum: A longâ€term regional scale analysis. Hydrological Processes, 2021, 35, e14341.	1.1	8
142	Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agricultural and Forest Meteorology, 2022, 313, 108745.	1.9	8
143	Drought in the Western United States: Its Connections with Large-Scale Oceanic Oscillations. Atmosphere, 2019, 10, 82.	1.0	7
144	Unscented weighted ensemble Kalman filter for soil moisture assimilation. Journal of Hydrology, 2020, 580, 124352.	2.3	7

#	Article	IF	CITATIONS
145	The pattern of sedimentary bacterial communities varies with latitude within a large eutrophic lake. Limnologica, 2021, 87, 125860.	0.7	7
146	Evaluating the Water Level Variation of a High-Altitude Lake in Response to Environmental Changes on the Southern Tibetan Plateau. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	7
147	Response of runoff to vegetation change in typical basin of the Loess Plateau. Ecological Engineering, 2022, 182, 106704.	1.6	7
148	On Evaluating Characteristics of the Solute Transport in the Arid Vadose Zone. Ground Water, 2014, 52, 50-62.	0.7	6
149	What are the main challenges facing the sustainable development of China's Yangtze economic belt in the future? An integrated view. Environmental Research Communications, 2021, 3, 115005.	0.9	6
150	Entropy-Based Research on Precipitation Variability in the Source Region of China's Yellow River. Water (Switzerland), 2020, 12, 2486.	1.2	5
151	Streamflow Simulation with an Integrated Approach of Wavelet Analysis and Artificial Neural Networks. , 2008, , .		4
152	Closure to "Estimating the Effects of Climatic Variability and Human Activities on Streamflow in the Hutuo River Basin, China―by Shizhang Peng, Wanxin Liu, Weiguang Wang, Quanxi Shao, Xiyun Jiao, Zhongbo Yu, Wanqiu Xing, Junzeng Xu, Zengxin Zhang, and Yufeng Luo. Journal of Hydrologic Engineering - ASCE, 2014, 19, 836-839.	0.8	4
153	Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments. Journal of Basic Microbiology, 2017, 57, 625-632.	1.8	4
154	Lower Compositional Variation and Higher Network Complexity of Rhizosphere Bacterial Community in Constructed Wetland Compared to Natural Wetland. Microbial Ecology, 2023, 85, 965-979.	1.4	4
155	A Modified Soil Moisture Model for Two‣ayerÂSoil. Ground Water, 2016, 54, 569-578.	0.7	3
156	Effects of macrobenthic bioturbation on the abundance and community composition of ammonia-oxidizing prokaryotes under different temperatures. Journal of Freshwater Ecology, 2017, 32, 405-414.	0.5	3
157	Evaluation of Environmental Impacts Due to Blue Water Consumption in China from Production and Consumption Perspectives. International Journal of Environmental Research and Public Health, 2018, 15, 2445.	1.2	3
158	Contrasting Patterns of the Resident and Active Rhizosphere Bacterial Communities of Phragmites Australis. Microbial Ecology, 2022, 83, 314-327.	1.4	3
159	ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description. Geoscientific Model Development, 2022, 15, 4503-4528.	1.3	3
160	Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China. Sustainability, 2018, 10, 4308.	1.6	2
161	Evaluating Depressional Process of Macropore Flow and Its Impact on Solute Transport. Journal of Hydrologic Engineering - ASCE, 2014, 19, 04014005.	0.8	1
162	Effects of shading levels on the composition and co-occurrence patterns of bacterioplankton and epibiotic bacterial communities of Cabomba caroliniana. Science of the Total Environment, 2021, 785, 147286.	3.9	1

#	Article	IF	CITATIONS
163	Xin'anjiang Nested Experimental Watershed (XAJ-NEW) for Understanding Multiscale Water Cycle: Scientific Objectives and Experimental Design. Engineering, 2021, , .	3.2	1
164	Analysis of Regional Water and Energy Consumption Considering Economic Development. Water (Switzerland), 2021, 13, 3582.	1.2	1
165	Physical and virtual water transfers and the impacts on regional ecosystem quality and resources. MATEC Web of Conferences, 2018, 246, 01070.	0.1	0
166	New approaches for addressing challenges in large-scale surface and ground water hydrology. , 2020, , .		0