Zhuojian Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134876/publications.pdf Version: 2024-02-01

ΖΗΠΟΠΑΝ ΓΙΑΝΟ

#	Article	IF	CITATIONS
1	Tuning Intermolecular Interactions of Molecular Crowding Electrolyte for High-Performance Aqueous Batteries. ACS Energy Letters, 2022, 7, 123-130.	8.8	57
2	Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nature Energy, 2022, 7, 417-426.	19.8	66
3	Mechanistic Understanding of Oxygen Electrodes in Rechargeable Multivalent Metalâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1588-1598.	2.4	6
4	Achieving Efficient Magnesium–Sulfur Battery Chemistry via Polysulfide Mediation. Advanced Energy Materials, 2021, 11, 2101552.	10.2	36
5	Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy and Environmental Science, 2020, 13, 2870-2877.	15.6	60
6	Molecular crowding electrolytes for high-voltage aqueous batteries. Nature Materials, 2020, 19, 1006-1011.	13.3	431
7	Critical Role of Anion Donicity in Li ₂ S Deposition and Sulfur Utilization in Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25940-25948.	4.0	50
8	A high-rate and long-life organic–oxygen battery. Nature Materials, 2019, 18, 390-396.	13.3	110
9	Superoxide Stabilization and a Universal KO ₂ Growth Mechanism in Potassium–Oxygen Batteries. Angewandte Chemie - International Edition, 2018, 57, 5042-5046.	7.2	62
10	Superoxide Stabilization and a Universal KO ₂ Growth Mechanism in Potassium–Oxygen Batteries. Angewandte Chemie, 2018, 130, 5136-5140.	1.6	28
11	Dynamic oxygen shield eliminates cathode degradation in lithium–oxygen batteries. Energy and Environmental Science, 2018, 11, 3500-3510.	15.6	38
12	Cation-Directed Selective Polysulfide Stabilization in Alkali Metal–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 10740-10748.	6.6	68
13	Recent Progress in Applying In Situ/Operando Characterization Techniques to Probe the Solid/Liquid/Gas Interfaces of Li–O ₂ Batteries. Small Methods, 2017, 1, 1700150.	4.6	56
14	Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium–Oxygen Batteries. Journal of the American Chemical Society, 2016, 138, 7574-7583.	6.6	272
15	Mechanistic Insights into Catalyst-Assisted Nonaqueous Oxygen Evolution Reaction in Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2016, 120, 6459-6466.	1.5	69
16	Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries. Nature Communications, 2015, 6, 5877.	5.8	130