
Xavier Langlois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11348587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. Journal of Comparative Neurology, 2000, 417, 181-194.	1.6	402
2	Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice. Mediators of Inflammation, 2013, 2013, 1-14.	3.0	264
3	JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology, 2004, 47, 961-972.	4.1	145
4	[3H]R214127: A Novel High-Affinity Radioligand for the mGlu1 Receptor Reveals a Common Binding Site Shared by Multiple Allosteric Antagonists. Molecular Pharmacology, 2003, 63, 1082-1093.	2.3	129
5	Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. European Journal of Pharmacology, 2004, 485, 145-158.	3.5	121
6	Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. Journal of Neurochemistry, 2003, 84, 1118-1127.	3.9	95
7	Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behavioural Brain Research, 2005, 164, 52-60.	2.2	86
8	Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology, 2004, 46, 609-619.	4.1	73
9	Preclinical Evaluation of ¹⁸ F-JNJ64349311, a Novel PET Tracer for Tau Imaging. Journal of Nuclear Medicine, 2017, 58, 975-981.	5.0	72
10	Light and electron microscopic immunocytochemical visualization of 5-HT1B receptors in the rat brain. Brain Research, 1997, 760, 281-286.	2.2	70
11	Combined α2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. International Journal of Neuropsychopharmacology, 2005, 8, 315-327.	2.1	70
12	Preclinical Evaluation of ¹⁸ F-JNJ41510417 as a Radioligand for PET Imaging of Phosphodiesterase-10A in the Brain. Journal of Nuclear Medicine, 2010, 51, 1584-1591.	5.0	64
13	Dopamine receptor-mediated regulation of RGS2 and RGS4 mRNA differentially depends on ascending dopamine projections and time. European Journal of Neuroscience, 2004, 19, 2249-2260.	2.6	63
14	Pharmacological Characterization of JNJ-40068782, a New Potent, Selective, and Systemically Active Positive Allosteric Modulator of the mGlu2 Receptor and Its Radioligand [³ H]JNJ-40068782. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 514-527.	2.5	59
15	Adjunctive α2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. International Journal of Neuropsychopharmacology, 2010, 13, 891-903.	2.1	51
16	Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but Not Depressive-Like Behavior in Mice. BioMed Research International, 2015, 2015, 1-14.	1.9	50
17	Pyrido[4,3- <i>e</i>][1,2,4]triazolo[4,3- <i>a</i>]pyrazines as Selective, Brain Penetrant Phosphodiesterase 2 (PDE2) Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 282-286.	2.8	49
18	Synthesis, Evaluation, and Radiolabeling of New Potent Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2 as Potential Tracers for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2012, 55, 8685-8699.	6.4	48

XAVIER LANGLOIS

#	Article	IF	CITATIONS
19	Molecular properties affecting fast dissociation from the D2 receptor. Bioorganic and Medicinal Chemistry, 2011, 19, 2231-2241.	3.0	46
20	Dominant Role of the Cytosolic C-Terminal Domain of the Rat 5-HT1BReceptor in Axonal–Apical Targeting. Journal of Neuroscience, 2000, 20, 9111-9118.	3.6	45
21	Synthesis, In Vivo Occupancy, and Radiolabeling of Potent Phosphodiesterase Subtype-10 Inhibitors as Candidates for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2011, 54, 5820-5835.	6.4	43
22	Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement. ACS Medicinal Chemistry Letters, 2014, 5, 1049-1053.	2.8	41
23	Discovery of VU0409551/JNJ-46778212: An mGlu ₅ Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Medicinal Chemistry Letters, 2015, 6, 716-720.	2.8	41
24	Preclinical evaluation of the antipsychotic potential of the mGlu2â€positive allosteric modulator JNJâ€40411813. Pharmacology Research and Perspectives, 2015, 3, e00097.	2.4	39
25	Discovery of a Potent, Selective, and Orally Active Phosphodiesterase 10A Inhibitor for the Potential Treatment of Schizophrenia. Journal of Medicinal Chemistry, 2014, 57, 4196-4212.	6.4	36
26	Pharmacology of JNJ-37822681, a Specific and Fast-Dissociating D ₂ Antagonist for the Treatment of Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 91-105.	2.5	33
27	Memantine-induced brain activation as a model for the rapid screening of potential novel antipsychotic compounds: exemplified by activity of an mGlu2/3 receptor agonist. Psychopharmacology, 2011, 214, 505-514.	3.1	32
28	Pharmacological and pharmacokinetic properties of JNJâ€40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacology Research and Perspectives, 2015, 3, e00096.	2.4	32
29	Pharmacology of JNJ-42314415, a Centrally Active Phosphodiesterase 10A (PDE10A) Inhibitor: A Comparison of PDE10A Inhibitors with D ₂ Receptor Blockers as Potential Antipsychotic Drugs. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 138-154.	2.5	31
30	Discovery of <i>N</i> -(Pyridin-4-yl)-1,5-naphthyridin-2-amines as Potential Tau Pathology PET Tracers for Alzheimer's Disease. Journal of Medicinal Chemistry, 2017, 60, 1272-1291.	6.4	31
31	What We Observe In Vivo Is Not Always What We See In Vitro: Development and Validation of 11C-JNJ-42491293, A Novel Radioligand for mGluR2. Journal of Nuclear Medicine, 2017, 58, 110-116.	5.0	31
32	Discovery of a new series of [1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 785-790.	2.2	28
33	In vivo molecular neuroimaging of glucose utilization and its association with fibrillar amyloid-β load in aged APPPS1-21 mice. Alzheimer's Research and Therapy, 2015, 7, 76.	6.2	27
34	Patterns of Brain Glucose Metabolism Induced by Phosphodiesterase 10A Inhibitors in the Mouse: A Potential Translational Biomarker. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 210-217.	2.5	25
35	Evaluation of Small-Animal PET Outcome Measures to Detect Disease Modification Induced by BACE Inhibition in a Transgenic Mouse Model of Alzheimer Disease. Journal of Nuclear Medicine, 2017, 58, 1977-1983.	5.0	24
36	Effect of stress and peripheral immune activation on astrocyte activation in transgenic bioluminescent <scp>G</scp> fapâ€luc mice. Glia, 2015, 63, 1126-1137.	4.9	22

#	Article	IF	CITATIONS
37	The Effects of Physiological and Methodological Determinants on ¹⁸ F-FDG Mouse Brain Imaging Exemplified in a Double Transgenic Alzheimer Model. Molecular Imaging, 2016, 15, 153601211562491.	1.4	21
38	Differential Membrane Targeting and Pharmacological Characterization of Chimeras of Rat Serotonin 5-HT1A and 5-HT1B Receptors Expressed in Epithelial LLC-PK1 Cells. Journal of Neurochemistry, 2002, 71, 2294-2303.	3.9	16
39	Identification of a Novel Orally Bioavailable Phosphodiesterase 10A (PDE10A) Inhibitor with Efficacy in Animal Models of Schizophrenia Journal of Medicinal Chemistry, 2015, 58, 978-993.	6.4	16
40	Synthesis and biological evaluation of carbon-11 and fluorine-18 labeled tracers for in vivo visualization of PDE10A. Nuclear Medicine and Biology, 2014, 41, 695-704.	0.6	15
41	Longitudinal Characterization of [18F]-FDG and [18F]-AV45 Uptake in the Double Transgenic TASTPM Mouse Model. Journal of Alzheimer's Disease, 2016, 55, 1537-1548.	2.6	15
42	Quantitative μPET Imaging of Cerebral Glucose Metabolism and Amyloidosis in the TASTPM Double Transgenic Mouse Model of Alzheimer's Disease. Current Alzheimer Research, 2015, 12, 694-703.	1.4	14
43	Striatal phosphodiesterase 10A availability is altered secondary to chronic changes in dopamine neurotransmission. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 3.	3.9	13
44	The [¹⁸ F]FDG <i>μ</i> PET Readout of a Brain Activation Model to Evaluate the Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator JNJ-42153605. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 375-386.	2.5	12
45	Examining dopamine D3 receptor occupancy by antipsychotic drugs via [3H]7-OH-DPAT ex vivo autoradiography and its cross-validation via c-fos immunohistochemistry in the rat brain. European Journal of Pharmacology, 2014, 740, 669-675.	3.5	9
46	Preclinical Comparison of the Amyloid-β Radioligands [11C]Pittsburgh compound B and [18F]florbetaben in Aged APPPS1-21 and BRI1-42 Mouse Models of Cerebral Amyloidosis. Molecular Imaging and Biology, 2015, 17, 688-696.	2.6	8
47	In vivo evidence for ligand-specific receptor activation in the central CRF system, as measured by local cerebral glucose utilization. Peptides, 2009, 30, 947-954.	2.4	6
48	Metabotropic glutamate receptor 2/3 density and its relation to the hippocampal neuropathology in a model of temporal lobe epilepsy in rats. Epilepsy Research, 2016, 127, 55-59.	1.6	6
49	Image Informatics Strategies for Deciphering Neuronal Network Connectivity. Advances in Anatomy, Embryology and Cell Biology, 2016, 219, 123-148.	1.6	5
50	MK-801 alters RGS2 levels and adenylyl cyclase sensitivity in the rat striatum. NeuroReport, 2005, 16, 159-162.	1.2	4
51	Activator of G protein signaling type 3 mRNA is widely distributed in the rat brain and is particularly abundant in the subventricular zone-olfactory bulb system of neural precursor cell proliferation, migration and differentiation. Neuroscience Letters, 2006, 391, 116-121.	2.1	4
52	BiDiFuse: a FIJI plugin for fusing bi-directionally recorded microscopic image volumes. Bioinformatics, 2016, 32, 3691-3693.	4.1	2
53	Differential Interaction of Neuroleptics with Apomorphine-Induced Behavior in Rats as a Function of Changing Levels of Dopamine Receptor Stimulation. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 681-696.	2.5	1