Kulvinder Gill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134777/publications.pdf

Version: 2024-02-01

109321 114465 4,053 67 35 63 citations h-index g-index papers 67 67 67 2884 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	QTL mapping using GBS and SSR genotyping reveals genomic regions controlling wheat coleoptile length and seedling emergence. Euphytica, 2021, 217, 1.	1.2	10
2	Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth. Physiologia Plantarum, 2021, 172, 233-246.	5.2	12
3	Registration of â€~Resilience CL+' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 196-205.	0.5	0
4	Registration of â€~Mela CL+' soft white winter wheat. Journal of Plant Registrations, 2020, 14, 144-152.	0.5	2
5	Registration of â€~Curiosity CL+' soft white winter wheat. Journal of Plant Registrations, 2020, 14, 377-387.	0.5	2
6	Genome-wide analysis of the HSP101/CLPB gene family for heat tolerance in hexaploid wheat. Scientific Reports, 2020, 10, 3948.	3. 3	22
7	Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat. Functional and Integrative Genomics, 2019, 19, 29-41.	3 . 5	5
8	The novel function of the Ph1 gene to differentiate homologs from homoeologs evolved in Triticum turgidum ssp. dicoccoides via a dramatic meiosis-specific increase in the expression of the 5B copy of the C-Ph1 gene. Chromosoma, 2019, 128, 561-570.	2.2	8
9	Molecular Characterization of Auxin Efflux Carrier- ABCB1 in hexaploid wheat. Scientific Reports, 2019, 9, 17327.	3.3	3
10	Evolution of Rubisco activase gene in plants. Plant Molecular Biology, 2018, 96, 69-87.	3.9	42
11	Inheritance and Genetic Mapping of the Reduced Height (Rht18) Gene in Wheat. Plants, 2018, 7, 58.	3. 5	13
12	Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids. G3: Genes, Genomes, Genetics, 2017, 7, 1225-1237.	1.8	21
13	Targeted and efficient transfer of value-added genes into a wheat variety. Molecular Breeding, 2017, 37, 1.	2.1	5
14	Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat (Triticum aestivum, L.). Frontiers in Plant Science, 2017, 8, 1913.	3.6	19
15	Conservation and divergence of Starch Synthase III genes of monocots and dicots. PLoS ONE, 2017, 12, e0189303.	2.5	9
16	An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat. PLoS ONE, 2015, 10, e0145227.	2.5	38
17	Sequencing-based high throughput mutation detection in bread wheat. BMC Genomics, 2015, 16, 962.	2.8	32
18	Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homeologous 1 ($\langle i \rangle Ph1 \langle i \rangle$) gene mutations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14187-14192.	7.1	78

#	Article	IF	CITATIONS
19	Comparative analysis of ABCB1 reveals novel structural and functional conservation between monocots and dicots. Frontiers in Plant Science, 2014, 5, 657.	3.6	23
20	Variability of Root Traits in Spring Wheat Germplasm. PLoS ONE, 2014, 9, e100317.	2.5	103
21	Wheat Seedling Emergence from Deep Planting Depths and Its Relationship with Coleoptile Length. PLoS ONE, 2013, 8, e73314.	2.5	61
22	Genetic Dissection of Yield and Its Component Traits Using High-Density Composite Map of Wheat Chromosome 3A: Bridging Gaps between QTLs and Underlying Genes. PLoS ONE, 2013, 8, e70526.	2.5	40
23	Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Functional and Integrative Genomics, 2012, 12, 143-156.	3.5	74
24	Mapping QTL for Agronomic Traits on Wheat Chromosome 3A and a Comparison of Recombinant Inbred Chromosome Line Populations. Crop Science, 2011, 51, 553-566.	1.8	40
25	Registration of Seven Winter Wheat Germplasm Lines Carrying the <i>Wsm1</i> Gene for <i>Wheat Streak Mosaic Virus</i> Resistance. Journal of Plant Registrations, 2011, 5, 414-417.	0.5	4
26	Dynamic nature of a wheat centromere with a functional gene. Molecular Breeding, 2010, 26, 177-187.	2.1	5
27	Mapping barley Ds insertions using wheat deletion lines reveals high insertion frequencies in gene-rich regions with high to moderate recombination rates. Genome, 2009, 52, 566-575.	2.0	7
28	Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection. PLoS ONE, 2009, 4, e5752.	2.5	78
29	Fine structure mapping of a gene-rich region of wheat carrying $\langle i \rangle Ph1 \langle i \rangle$, a suppressor of crossing over between homoeologous chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5815-5820.	7.1	33
30	High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics, 2006, 88, 74-87.	2.9	41
31	Distribution of genes and recombination in wheat and other eukaryotes. Plant Cell, Tissue and Organ Culture, 2005, 79, 257-270.	2.3	30
32	Analysis of recombination and gene distribution in the 2L1.0 region of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Genomics, 2005, 86, 47-54.	2.9	9
33	Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4. Genetics, 2004, 168, 651-663.	2.9	90
34	Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis. Genetics, 2004, 168, 609-623.	2.9	78
35	A Chromosome Bin Map of 2148 Expressed Sequence Tag Loci of Wheat Homoeologous Group 7. Genetics, 2004, 168, 687-699.	2.9	68
36	Deletion Mapping of Homoeologous Group 6-Specific Wheat Expressed Sequence Tags. Genetics, 2004, 168, 677-686.	2.9	43

#	Article	IF	CITATIONS
37	Group 3 Chromosome Bin Maps of Wheat and Their Relationship to Rice Chromosome 1. Genetics, 2004, 168, 639-650.	2.9	81
38	Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research, 2004, 32, 3546-3565.	14.5	181
39	A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes Among the Three Genomes of Polyploid Wheat. Genetics, 2004, 168, 701-712.	2.9	369
40	A 2600-Locus Chromosome Bin Map of Wheat Homoeologous Group 2 Reveals Interstitial Gene-Rich Islands and Colinearity With Rice. Genetics, 2004, 168, 625-637.	2.9	78
41	Identification of Wheat Chromosomal Regions Containing Expressed Resistance Genes. Genetics, 2004, 166, 461-481.	2.9	78
42	Identification and analysis of expressed resistance gene sequences in wheat. Plant Molecular Biology, 2003, 53, 771-787.	3.9	31
43	The Organization and Rate of Evolution of Wheat Genomes Are Correlated With Recombination Rates Along Chromosome Arms. Genome Research, 2003, 13, 753-763.	5.5	298
44	Understanding the Effect of Rye Chromatin in Bread Wheat. Crop Science, 2003, 43, 1643-1651.	1.8	53
45	Gene-Containing Regions of Wheat and the Other Grass Genomes. Plant Physiology, 2002, 128, 803-811.	4.8	112
46	Identification of Expressed Sequence Markers for a Major Geneâ€Rich Region of Wheat Chromosome Group <i>1</i> Using RNA Fingerprintingâ€"Differential Display. Crop Science, 2002, 42, 1285-1290.	1.8	10
47	Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Functional and Integrative Genomics, 2002, 2, 51-59.	3.5	65
48	Structural and functional organization of the '1S0.8 gene-rich region' in the Triticeae. Plant Molecular Biology, 2002, 48, 791-804.	3.9	24
49	DNA Content and Ploidy Determination of Bromegrass Germplasm Accessions by Flow Cytometry. Crop Science, 2001, 41, 1629-1634.	1.8	42
50	Karyotype and Câ€Banding Patterns of Mitotic Chromosomes in Diploid Bromegrass (Bromus riparius) Tj ETQq0	0 0 rgBT /	Overlock 10 1
51	Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theoretical and Applied Genetics, 2001, 102, 658-663.	3.6	37
52	Identification and Physical Localization of Useful Genes and Markers to a Major Gene-Rich Region on Wheat Group <i>15</i> 1516171717171717171717171717171717171717	2.9	104
53	Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica, 2000, 114, 135-142.	1.2	14
54	A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theoretical and Applied Genetics, 1999, 99, 16-26.	3.6	78

#	Article	IF	CITATIONS
55	Molecular Mapping of Loci for Agronomic Traits on Chromosome 3A of Bread Wheat. Crop Science, 1999, 39, 1728-1732.	1.8	105
56	A PCRâ€Based Screening Assay of Ph1 , the Chromosome Pairing Regulator Gene of Wheat. Crop Science, 1996, 36, 719-722.	1.8	24
57	Transfer of Wheat Streak Mosaic Virus Resistance from Agropyron intermedium into Wheat. Crop Science, 1996, 36, 857-861.	1.8	44
58	Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group <i>5</i> of Wheat. Genetics, 1996, 143, 1001-1012.	2.9	344
59	Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group $\langle i > 1 < i > 0 $ Wheat. Genetics, 1996, 144, 1883-1891.	2.9	223
60	Barley, Canola, and Weed Growth with Decreasing Tillage in a Cold, Semiarid Climate. Agronomy Journal, 1995, 87, 49-55.	1.8	26
61	Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L Molecular Genetics and Genomics, 1994, 245, 644-653.	2.4	97
62	Mapping in the realm of polyploidy: The wheat model. BioEssays, 1994, 16, 841-846.	2.5	40
63	Towards Molecular Tagging of Karnal Bunt Resistance Gene(s) in Wheat. Journal of Plant Biochemistry and Biotechnology, 1994, 3, 79-83.	1.7	2
64	A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma, 1993, 102, 374-381.	2.2	193
65	Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat Genetics, 1993, 134, 1231-1236.	2.9	99
66	A DNA fragment mapped within the submicroscopic deletion of Ph1, a chromosome pairing regulator gene in polyploid wheat Genetics, 1991, 129, 257-259.	2.9	38
67	Microsatellites Based Genetic Linkage Map of the <i>Rht3</i> Locus in Bread Wheat. Molecular Plant Breeding, 0, , .	0.0	2