David N Seidman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113473/publications.pdf

Version: 2024-02-01

145 papers 8,682 citations

76326 40 h-index 89 g-index

149 all docs 149 docs citations

149 times ranked 5342 citing authors

#	Article	IF	CITATIONS
1	Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Materialia, 2014, 62, 141-155.	7.9	1,131
2	Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram. Microscopy and Microanalysis, 2000, 6, 437-444.	0.4	701
3	Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Materialia, 2002, 50, 4021-4035.	7.9	645
4	Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Materialia, 2013, 61, 2769-2782.	7.9	492
5	Criteria for developing castable, creep-resistant aluminum-based alloys – A review. International Journal of Materials Research, 2006, 97, 246-265.	0.8	431
6	Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Materialia, 2003, 51, 4803-4814.	7.9	385
7	Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C. Acta Materialia, 2008, 56, 114-127.	7.9	239
8	Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II-coarsening of Al(ScZr) precipitates. Acta Materialia, 2005, 53, 5415-5428.	7.9	219
9	Solution processing of air-stable molecular semiconducting iodosalts, Cs ₂ Snl _{6â^'x} Br _x , for potential solar cell applications. Sustainable Energy and Fuels, 2017, 1, 710-724.	4.9	174
10	Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2552-2563.	2.2	156
11	Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Materialia, 2003, 51, 4751-4760.	7.9	155
12	Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Materialia, 2012, 60, 3643-3654.	7.9	138
13	Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Materials, 2016, 15, 1023-1030.	27.5	132
14	Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08at. %Sc alloy. Scripta Materialia, 2006, 55, 437-440.	5.2	129
15	Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al–Sc alloys. Acta Materialia, 2005, 53, 4225-4235.	7.9	122
16	Comparison of Compositional and Morphological Atom-Probe Tomography Analyses for a Multicomponent Fe-Cu Steel. Microscopy and Microanalysis, 2007, 13, 272-284.	0.4	116
17	Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content. Acta Materialia, 2018, 144, 80-91.	7.9	115
18	High-Strength Low-Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 363-373.	2.2	107

#	Article	IF	CITATIONS
19	Chromium and tantalum site substitution patterns in Ni3Al(L12)â€^γ′-precipitates. Applied Physics Letters, 2008, 93, .	3.3	86
20	Atomic gold–enabled three-dimensional lithography for silicon mesostructures. Science, 2015, 348, 1451-1455.	12.6	82
21	Multicomponent High-Strength Low-Alloy Steel Precipitation-Strengthened by Sub-nanometric Cu Precipitates and M2C Carbides. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3860-3872.	2.2	82
22	Direct observations of nucleation in a nondilute multicomponent alloy. Physical Review B, 2006, 73, .	3.2	80
23	The partitioning and site preference of rhenium or ruthenium in model nickel-based superalloys: An atom-probe tomographic and first-principles study. Applied Physics Letters, 2008, 93, .	3.3	71
24	Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio. Acta Materialia, 2016, 119, 35-42.	7.9	71
25	Precipitation strengthening in naturally aged Al–Zn–Mg–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140719.	5.6	65
26	On the interplay between tungsten and tantalum atoms in Ni-based superalloys: An atom-probe tomographic and first-principles study. Applied Physics Letters, 2009, 94, .	3.3	63
27	Role of silicon in the precipitation kinetics of dilute Al-Sc-Er-Zr alloys. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 485-495.	5.6	63
28	Atomâ€probe analyses of nanodiamonds from Allende. Meteoritics and Planetary Science, 2014, 49, 453-467.	1.6	62
29	Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys. Acta Materialia, 2017, 124, 501-512.	7.9	61
30	Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys. Acta Materialia, 2019, 165, 1-14.	7.9	58
31	Nanoscale precipitation and mechanical properties of Al-0.06 at.% Sc alloys microalloyed with Yb or Gd. Journal of Materials Science, 2006, 41, 7814-7823.	3.7	55
32	Subnanoscale Studies of Segregation at Grain Boundaries: Simulations and Experiments. Annual Review of Materials Research, 2002, 32, 235-269.	9.3	52
33	Microstructural and creep properties of boron- and zirconium-containing cobalt-based superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 260-269.	5.6	52
34	Chemistry and structure of core/double-shell nanoscale precipitates in Al–6.5Li–0.07Sc–0.02Yb (at.%). Acta Materialia, 2011, 59, 3398-3409.	7.9	51
35	Creep of Al-Sc Microalloys with Rare-Earth Element Additions. Materials Science Forum, 2006, 519-521, 1035-1040.	0.3	49
36	Dependence of interfacial excess on the threshold value of the isoconcentration surface. Surface and Interface Analysis, 2004, 36, 594-597.	1.8	48

3

#	Article	IF	Citations
37	Nanoscale studies of segregation at coherent heterophase interfaces inα-Fe based systems. Surface and Interface Analysis, 2004, 36, 569-574.	1.8	47
38	Phase-partitioning and site-substitution patterns of molybdenum in a model Ni-Al-Mo superalloy: An atom-probe tomographic and first-principles study. Applied Physics Letters, 2012, 101, .	3.3	45
39	Creep properties and precipitate evolution in Al–Li alloys microalloyed with Sc and Yb. Materials Science & Science & Properties, Microstructure and Processing, 2012, 550, 300-311.	5.6	44
40	Atomic resolution mapping of interfacial intermixing and segregation in InAs/GaSb superlattices: A correlative study. Journal of Applied Physics, 2013, 113, 103511.	2.5	41
41	Co-Precipitated and Collocated Carbides and Cu-Rich Precipitates in a Fe–Cu Steel Characterized by Atom-Probe Tomography. Microscopy and Microanalysis, 2014, 20, 1727-1739.	0.4	41
42	Nanoscale Studies of the Chemistry of a René N6 Superalloy. Journal of Materials Science, 2001, 9, 249-255.	1.2	40
43	Ambient- and elevated-temperature strengthening by Al3Zr-Nanoprecipitates and Al3Ni-Microfibers in a cast Al-2.9Ni-0.11Zr-0.02Si-0.005Er (at.%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 78-89.	5.6	39
44	Ultraviolet-laser atom-probe tomographic three-dimensional atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Applied Physics Letters, 2011, 98, 013111.	3.3	38
45	Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy. Nano Letters, 2016, 16, 4490-4500.	9.1	36
46	On the nanometer scale phase separation of a low-supersaturation Ni–Al–Cr alloy. Philosophical Magazine, 2010, 90, 219-235.	1.6	35
47	Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al–Zr–Er–Si alloy. Acta Materialia, 2019, 181, 249-261.	7.9	35
48	Phase partitioning and site-preference of hafnium in the $\hat{I}^3 = (L12) \hat{a}^* - \hat{I}^3$ (fcc) system in Ni-based superalloys: An atom-probe tomographic and first-principles study. Applied Physics Letters, 2009, 95, .	3.3	34
49	Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening. Acta Materialia, 2020, 194, 60-67.	7.9	34
50	Laser writing of nitrogen-doped silicon carbide for biological modulation. Science Advances, 2020, 6, .	10.3	33
51	Nanostructural evolution of Al3Sc precipitates in an AlScMg alloy by three-dimensional atom probe microscopy. Surface and Interface Analysis, 2004, 36, 559-563.	1.8	32
52	Three-dimensional Investigation of Ceramic/Metal Heterophase Interfaces by Atom-probe Microscopy. Microscopy and Microanalysis, 2000, 6, 445-451.	0.4	31
53	Nanoscale Analyses of High-Nickel Concentration Martensitic High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3046-3059.	2.2	31
54	Effects of annealing on local composition and electrical transport correlations in MgO-based magnetic tunnel junctions. Applied Physics Letters, 2008, 93, .	3.3	30

#	Article	IF	CITATIONS
55	Effects of temperature and ferromagnetism on the \hat{I}^3 -Ni/ \hat{I}^3 â \in 2-Ni3Al interfacial free energy from first principles calculations. Journal of Materials Science, 2012, 47, 7653-7659.	3.7	30
56	Dopant Distributions in PbTe-Based Thermoelectric Materials. Journal of Electronic Materials, 2012, 41, 1583-1588.	2.2	30
57	Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3642-3654.	2.2	30
58	A subnanoscale study of the nucleation, growth, and coarsening kinetics of Cu-rich precipitates in a multicomponent Fe – Cu based steel. International Journal of Materials Research, 2008, 99, 513-527.	0.3	29
59	overflow="scroil"> <mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:none></mml:none><mml:none></mml:none><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>12</mml:mn></mml:mmultiscripts> <mml:mo>/</mml:mo> // <td>1.9 tiscripts><</td> <td>28 mml:mrow</td>	1.9 tiscripts><	28 mml:mrow
60	Atom Probe Tomographic Studies of Precipitation in Al-0.1Zr-0.1Ti (at.%) Alloys. Microscopy and Microanalysis, 2007, 13, 503-516.	0.4	27
61	Carbon Redistribution and Carbide Precipitation in a High-Strength Low-Carbon HSLA-115 Steel Studied on a Nanoscale by Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3205-3219.	2.2	27
62	Effects of Sb micro-alloying on precipitate evolution and mechanical properties of a dilute Al-Sc-Zr alloy. Materials Science & Droperties, Microstructure and Processing, 2017, 680, 64-74.	5.6	27
63	Atomic-scale chemical analyses of niobium oxide/niobium interfaces via atom-probe tomography. Applied Physics Letters, 2008, 93, .	3.3	26
64	Precipitate Evolution and Creep Behavior of a W-Free Co-based Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6090-6096.	2.2	26
65	Effects of Si and Fe micro-additions on the aging response of a dilute Al-0.08Zr-0.08Hf-0.045Er†at.% alloy. Materials Characterization, 2019, 147, 72-83.	4.4	26
66	Strength Recovery in a High-Strength Steel During Multiple Weld Thermal Simulations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3669-3679.	2.2	25
67	Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5890-5910.	2.2	25
68	Effects of Nb and Ta additions on the strength and coarsening resistance of precipitation-strengthened Al-Zr-Sc-Er-Si alloys. Materials Characterization, 2018, 141, 260-266.	4.4	25
69	Atomic-scale analyses of Nb ₃ Sn on Nb prepared by vapor diffusion for superconducting radiofrequency cavity applications: a correlative study. Superconductor Science and Technology, 2019, 32, 024001.	3.5	25
70	Grain-boundary structure and segregation in Nb3Sn coatings on Nb for high-performance superconducting radiofrequency cavity applications. Acta Materialia, 2020, 188, 155-165.	7.9	24
71	NiSi crystal structure, site preference, and partitioning behavior of palladium in NiSi(Pd)/Si(100) thin films: Experiments and calculations. Applied Physics Letters, 2011 , 99 , .	3.3	23
72	Effect of Si micro-addition on creep resistance of a dilute Al-Sc-Zr-Er alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 27-33.	5.6	23

#	Article	IF	Citations
73	Effect of micro-additions of Ge, In or Sn on precipitation in dilute Al-Sc-Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 427-436.	5.6	23
74	Effect of microadditions of Mn and Mo on dual L12- and \hat{l}_{\pm} -precipitation in a dilute Al-Zr-Sc-Er-Si alloy. Materials Characterization, 2020, 169, 110585.	4.4	23
7 5	Perspective: From field-ion microscopy of single atoms to atom-probe tomography: A journey: "Atom-probe tomography―[Rev. Sci. Instrum. 78, 031101 (2007)]. Review of Scientific Instruments, 2007, 78, 030901.	1.3	22
76	Range profiles of low-energy (100 to 1500 eV) implanted sup>3 (sup>He and sup>4 (sup>He atoms in tungsten I. Experimental results. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1981, 44, 177-198.	0.6	21
77	Atomic Scale Chemistry of $\hat{l}\pm 2/\hat{A}$ Interfaces in a Multi-Component TiAl Alloy. Journal of Materials Science, 2004, 12, 303-310.	1.2	21
78	Materials integrity in microsystems: a framework for a petascale predictive-science-based multiscale modeling and simulation system. Computational Mechanics, 2008, 42, 485-510.	4.0	21
79	Atom probe tomography of metallic nanostructures. MRS Bulletin, 2016, 41, 23-29.	3.5	21
80	Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nature Communications, 2017, 8, 2014.	12.8	21
81	Atomic resolution study of displacement cascades in ionâ€irradiated platinum. Journal of Applied Physics, 1986, 60, 137-150.	2.5	20
82	Atomicâ€Scale Characterization of Aluminumâ€Based Multishell Nanoparticles Created by Solidâ€State Synthesis. Small, 2010, 6, 1728-1731.	10.0	19
83	Phase Segmentation in Atom-Probe Tomography Using Deep Learning-Based Edge Detection. Scientific Reports, 2019, 9, 20140.	3.3	19
84	Investigation of Strength Recovery in Welds of NUCu-140 Steel Through Multipass Welding and Isothermal Post-Weld Heat Treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5158-5170.	2.2	18
85	Systematic approaches for targeting an atom-probe tomography sample fabricated in a thin TEM specimen: Correlative structural, chemical and 3-D reconstruction analyses. Ultramicroscopy, 2018, 184, 284-292.	1.9	18
86	Range profiles of low-energy (100 to 1500 eV) implanted sup>3 (sup>He and sup>4 (sup>He atoms in tungsten II. Analysis and discussion. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1981, 44, 199-222.	0.6	17
87	Tomographic study of atomic-scale redistribution of platinum during the silicidation of Ni0.95Pt0.05/Si(100) thin films. Applied Physics Letters, 2009, 94, 113103.	3.3	17
88	Specimen preparation for correlating transmission electron microscopy and atom probe tomography of mesoscale features. Ultramicroscopy, 2014, 147, 25-32.	1.9	17
89	Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions. Nano Letters, 2016, 16, 1335-1344.	9.1	17
90	Effects of W and Si microadditions on microstructure and the strength of dilute precipitation-strengthened Al–Zr–Er alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140159.	5.6	17

#	Article	IF	Citations
91	True Atomic-Scale Imaging in Three Dimensions: A Review of the Rebirth of Field-Ion Microscopy. Microscopy and Microanalysis, 2017, 23, 210-220.	0.4	16
92	Nanowire Kinking Modulates Doping Profiles by Reshaping the Liquid–Solid Growth Interface. Nano Letters, 2017, 17, 4518-4525.	9.1	16
93	Tungsten solubility in L12-ordered Al3Er and Al3Zr nanoprecipitates formed by aging in an aluminum matrix. Journal of Alloys and Compounds, 2020, 820, 153383.	5.5	16
94	An electrochemical etching procedure for fabricating scanning tunneling microscopy and atom-probe field-ion microscopy tips. Metals and Materials International, 2003, 9, 399-404.	3.4	15
95	Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. Journal of Applied Physics, 2011, 109, 103909.	2.5	15
96	Atomicâ€Scale Structural and Chemical Study of Columnar and Multilayer Re–Ni Electrodeposited Thermal Barrier Coating. Advanced Engineering Materials, 2016, 18, 1133-1144.	3.5	15
97	Isothermal omega formation and evolution in the Beta-Ti alloy Ti-5Al-5Mo-5V-3Cr. Philosophical Magazine Letters, 2016, 96, 416-424.	1.2	15
98	Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy. Acta Materialia, 2021, 219, 117268.	7.9	15
99	Atom probe tomography of spaceâ€weathered lunar ilmenite grain surfaces. Meteoritics and Planetary Science, 2020, 55, 426-440.	1.6	14
100	Individual and synergistic effects of Mn and Mo micro-additions on precipitation and strengthening of a dilute Al–Zr-Sc-Er-Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140288.	5.6	14
101	New method for the calibration of three-dimensional atom-probe mass spectra. Review of Scientific Instruments, 2001, 72, 2984-2988.	1.3	13
102	Effects of ruthenium on phase separation in a model Ni–Al–Cr–Ru superalloy. Philosophical Magazine, 2013, 93, 1326-1350.	1.6	13
103	MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2340-2351.	2.2	13
104	Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology. Ultramicroscopy, 2018, 184, 225-233.	1.9	13
105	Evolution of Microstructure and Carbon Distribution During Heat Treatments of a Dual-Phase Steel: Modeling and Atom-Probe Tomography Experiments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 436-450.	2.2	13
106	Enhanced magnetoresistance in naturally oxidized MgO-based magnetic tunnel junctions with ferromagnetic CoFe/CoFeB bilayers. Applied Physics Letters, 2011, 98, 232506.	3.3	12
107	Atom-Probe Tomographic Analyses of Hydrogen Interstitial Atoms in Ultrahigh Purity Niobium. Microscopy and Microanalysis, 2015, 21, 535-543.	0.4	12
108	An Atomistic Tomographic Study of Oxygen and Hydrogen Atoms and their Molecules in CVD Grown Graphene. Small, 2015, 11, 5968-5974.	10.0	12

#	Article	IF	Citations
109	Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys. Journal of Materials Science, 2019, 54, 1857-1871.	3.7	12
110	Analysis of magnetic vortex dissipation in Sn-segregated boundaries in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Nb</mml:mi><td>mr30.320><m< td=""><td>mlızın>3</td></m<></td></mml:mrow></mml:msub></mml:math>	m r30.32 0> <m< td=""><td>mlızın>3</td></m<>	ml ız ın>3
111	The effect of vibrational entropy on the solubility and stability of ordered Al3Li phases in Al-Li alloys. APL Materials, 2013, 1, .	5.1	11
112	Microstructural Evolution and Mechanical Properties of Fusion Welds in an Iron-Copper-Based Multicomponent Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4155-4170.	2.2	10
113	Three-Dimensional Atom-Probe Tomographic Analyses of Lead-Telluride Based Thermoelectric Materials. Jom, 2014, 66, 2288-2297.	1.9	10
114	Analysis of a New High-Toughness Ultra-high-Strength Martensitic Steel by Transmission Electron Microscopy and Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1517-1528.	2.2	10
115	Silicide-phase evolution and platinum redistribution during silicidation of Ni0.95Pt0.05/Si(100) specimens. Journal of Applied Physics, 2012, 112, .	2.5	9
116	Atomic-Scale Chemical-Analyses of Niobium for Superconducting Radio-Frequency Cavities. IEEE Transactions on Applied Superconductivity, 2007, 17, 1314-1317.	1.7	8
117	Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel. International Journal of Materials Research, 2011, 102, 1115-1124.	0.3	8
118	An Efficient and Cost-Effective Method for Preparing Transmission Electron Microscopy Samples from Powders. Microscopy and Microanalysis, 2015, 21, 1184-1194.	0.4	8
119	Atomic-Scale Structure and Chemistry of Segregation at Matrix/Precipitate Heterophase Interfaces. Journal of Materials Science, 2001, 9, 257-264.	1.2	7
120	A Subnanoscale Investigation of Sb Segregation at MnO/Ag Ceramic/Metal Interfaces. Journal of Materials Science, 2001, 9, 199-211.	1.2	7
121	Subnanometer-scale chemistry and structure of $\hat{l}\pm$ -iron/molybdenum nitride heterophase interfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2317-2326.	2.2	7
122	Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1031-1043.	2.2	7
123	Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation. ACS Nano, 2019, 13, 3730-3738.	14.6	7
124	Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at.%) alloy. Journal of Materials Science, 2019, 54, 3485-3495.	3.7	7
125	Multi-component Cu-Strengthened Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3117-3131.	2.2	6
126	Comparison of Thermodynamic Predictions and Experimental Observations on B Additions in Powder-Processed Ni-Based Superalloys Containing Elevated Concentrations of Nb. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 729-739.	2.2	6

#	Article	IF	CITATIONS
127	Effects of W micro-additions on precipitation kinetics and mechanical properties of an Al–Mn–Mo–Si–Zr–Sc–Er alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140550.	5.6	5
128	Study of the Structure and Chemistry of Point, line and Planar Imperfections Via Field-Ion and Atom-Probe Field-Ion Microscopy. Materials Research Society Symposia Proceedings, 1988, 138, 315.	0.1	4
129	Study of the Structure and Chemistry of Point, Line and Planar Imperfections Via Field-Ion and Atom-Probe Field-Ion Microscopy. Materials Research Society Symposia Proceedings, 1989, 139, 25.	0.1	4
130	A Subnanoscale Study of Mg Segregation at Al/Al3Sc Interfaces. Microscopy and Microanalysis, 2002, 8, 1100-1101.	0.4	4
131	1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography. Nano Letters, 2017, 17, 7478-7486.	9.1	4
132	The effects of alloying elements on the peritectic range of Fe–C–Mn–Si steels. Journal of Materials Science, 2021, 56, 6448-6464.	3.7	4
133	Atomic-scale Study of a Transition Phase Precipitate and Its Interfacial Chemistry in an Feâ [*] 15 at.% Moâ [*] 5 at.% V Alloy. Microscopy and Microanalysis, 2001, 7, 424-434.	0.4	4
134	A scanning tunneling microscopy tip with a stable atomic structure. Metals and Materials International, 2004, 10, 97-101.	3.4	3
135	A Model Ni–Al–Mo Superalloy Studied by Ultraviolet Pulsed-Laser-Assisted Local-Electrode Atom-Probe Tomography. Microscopy and Microanalysis, 2015, 21, 480-490.	0.4	3
136	Correlative Transmission Electron Microscopy and Atom-Probe Tomography of an Iron Meteorite. Microscopy and Microanalysis, 2015, 21, 1313-1314.	0.4	3
137	Formation mechanism and stability of austenitic islands in carbides in a Ni-Cr-Fe based high-temperature austenitic alloy undergoing carburization. Scripta Materialia, 2021, 197, 113792.	5.2	2
138	Microstructural stability of an Ni–Mo based Hastelloy after 10 MeV electron irradiation at high temperature. International Journal of Materials Research, 2010, 101, 631-636.	0.3	1
139	Solute-Atom Segregation and Two-Dimensional Phases at Internal Interfaces: Atomic Resolution Observations. Materials Research Society Symposia Proceedings, 1986, 82, 415.	0.1	0
140	Monte Carlo Simulation of Solute-Atom Segregation at Grain Boundaries In Single-Phase Binary Face-Centered Cubic Alloys. Microscopy and Microanalysis, 1998, 4, 764-765.	0.4	0
141	Nanometer Scale Study of Segregation at Heterophase Interfaces of Molybdenum Nitride Precipitates in an α-Iron Matrix. Materials Research Society Symposia Proceedings, 2000, 652, 1.	0.1	0
142	A Subnanoscale Study of Segregation at CdO/Ag(Au) Heterophase Interfaces. Materials Research Society Symposia Proceedings, 2000, 654, 491.	0.1	0
143	An Experimental and Simulation Studies of a High Strain-Rate Deformation Shear Band in a High-Nickel Steel. Microscopy and Microanalysis, 2015, 21, 363-364.	0.4	0
144	Mapping Isotopes in Nanoscale and Quantum Materials Using Atom Probe Tomography. Microscopy and Microanalysis, 2016, 22, 652-653.	0.4	0

#	Article	IF	CITATIONS
145	The Supersaturation and Transient Volume Measurement for Nucleation, Growth, Coarsening in a Concentrated Ni-Based Superalloy. Microscopy and Microanalysis, 2017, 23, 724-725.	0.4	0