
Meysam Gheisarnejad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virtual Hardware-in-the-Loop FMU Co-Simulation Based Digital Twins for Heating, Ventilation, and Air-Conditioning (HVAC) Systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 65-75.	4.9	9
2	Smart Extreme Fast Portable Charger for Electric Vehicles-Based Artificial Intelligence. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 586-590.	3.0	2
3	Adaptive Speed Control of Electric Vehicles Based on Multi-Agent Fuzzy Q-Learning. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 102-110.	4.9	5
4	Smart Sensor Control for Rehabilitation in Parkinson's Patients. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 267-275.	4.9	6
5	Stabilization of 5G Telecom Converter-Based Deep Type-3 Fuzzy Machine Learning Control for Telecom Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 544-548.	3.0	17
6	A New Parameter Tuning Technique for Noninteger Controllers in Low-Inertia Modern Power Grids. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 279-288.	3.9	12
7	A novel intelligent ultra-local model control-based type-II fuzzy for frequency regulation of multi-microgrids. Transactions of the Institute of Measurement and Control, 2022, 44, 1134-1148.	1.7	10
8	Model Predictive Control Based Type-3 Fuzzy Estimator for Voltage Stabilization of DC Power Converters. IEEE Transactions on Industrial Electronics, 2022, 69, 13849-13858.	7.9	21
9	Optimal Cascade Non-Integer Controller for Shunt Active Power Filter: Real-Time Implementation. Designs, 2022, 6, 32.	2.4	7
10	Smart Emergency EV-to-EV Portable Battery Charger. Inventions, 2022, 7, 45.	2.5	10
11	An intelligent sliding mode control for stabilization of parallel converters feeding CPLs in DCâ€microgrid. IET Power Electronics, 2022, 15, 1596-1606.	2.1	3
12	A Novel Deep Reinforcement Learning Controller Based Type-II Fuzzy System: Frequency Regulation in Microgrids. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 689-699.	4.9	75
13	An Intelligent Type-2 Fuzzy Stabilization of Multi-DC Nano Power Grids. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 854-859.	4.9	22
14	An Intelligent Non-Integer PID Controller-Based Deep Reinforcement Learning: Implementation and Experimental Results. IEEE Transactions on Industrial Electronics, 2021, 68, 3609-3618.	7.9	55
15	A Novel Deep Learning Controller for DC–DC Buck–Boost Converters in Wireless Power Transfer Feeding CPLs. IEEE Transactions on Industrial Electronics, 2021, 68, 6379-6384.	7.9	30
16	A Novel Nonlinear Deep Reinforcement Learning Controller for DC–DC Power Buck Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 6849-6858.	7.9	78
17	Machine Learning Approach Based on Ultra-Local Model Control for Treating Cancer Pain. IEEE Sensors Journal, 2021, 21, 8245-8252.	4.7	7
18	Multi-microgrids with a Frequency Regulation-Based V2G Technology: Systems Analysis, Modeling, and Control. Power Systems, 2021, , 1-26.	0.5	0

#	Article	IF	CITATIONS
19	Nonsingular Terminal Sliding Mode Control With Ultra-Local Model and Single Input Interval Type-2 Fuzzy Logic Control for Pitch Control of Wind Turbines. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 690-700.	13.1	22
20	An Adaptive ADRC Control for Parkinson's Patients Using Machine Learning. IEEE Sensors Journal, 2021, 21, 8670-8678.	4.7	12
21	A Novel Method for Stabilizing Buck-Boost Converters with CPL using Model Prediction Control. , $2021,,.$		4
22	Delay-Dependent Stability Analysis of Modern Shipboard Microgrids. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 1693-1705.	5.4	13
23	A Time-Varying Deep Reinforcement Model Predictive Control for DC Power Converter Systems. , 2021, ,		11
24	A Novel Nonsingular Terminal Sliding Mode Control-Based Double Interval Type-2 Fuzzy Systems: Real-Time Implementation. Inventions, 2021, 6, 40.	2.5	5
25	An Energy Efficient Solution for Fuel Cell Heat Recovery in Zero-Emission Ferry Boats: Deep Deterministic Policy Gradient. IEEE Transactions on Vehicular Technology, 2021, 70, 7571-7581.	6.3	11
26	A New Off-Board Electrical Vehicle Battery Charger: Topology, Analysis and Design. Designs, 2021, 5, 51.	2.4	6
27	Intelligent and Fast Model-Free Sliding Mode Control for Shipboard DC Microgrids. IEEE Transactions on Transportation Electrification, 2021, 7, 1662-1671.	7.8	18
28	A survey on new trends of digital twin technology for power systems. Journal of Intelligent and Fuzzy Systems, 2021, 41, 3873-3893.	1.4	12
29	Time-delayed pith angle control of wind turbine systems-based Smith ultralocal model machine learning technique. , 2021, , 179-200.		0
30	A Novel Supervised Control Strategy for Interconnected DFIG-Based Wind Turbine Systems: MiL Validations. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 962-971.	4.9	11
31	A New Event-Triggered Type-3 Fuzzy Control System for Multi-Agent Systems: Optimal Economic Efficient Approach for Actuator Activating. Electronics (Switzerland), 2021, 10, 3122.	3.1	9
32	The Future 5G Network-Based Secondary Load Frequency Control in Shipboard Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 836-844.	5.4	62
33	Islanded Microgrid Frequency Regulations Concerning the Integration of Tidal Power Units: Real-Time Implementation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1099-1103.	3.0	22
34	An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1104-1108.	3.0	50
35	A Close Loop Multi-Area Brain Stimulation Control for Parkinson's Patients Rehabilitation. IEEE Sensors Journal, 2020, 20, 2205-2213.	4.7	23
36	A New Intelligent Hybrid Control Approach for DC–DC Converters in Zero-Emission Ferry Ships. IEEE Transactions on Power Electronics, 2020, 35, 5832-5841.	7.9	60

Meysam Gheisarnejad

#	Article	IF	CITATIONS
37	A New Nonlinear Controller for Multilevel DC/DC Boost Converter. , 2020, , .		6
38	Digital Twins-Assisted Design of Next-Generation Advanced Controllers for Power Systems and Electronics: Wind Turbine as a Case Study. Inventions, 2020, 5, 19.	2.5	25
39	A Novel Deep Learning Backstepping Controller-Based Digital Twins Technology for Pitch Angle Control of Variable Speed Wind Turbine. Designs, 2020, 4, 15.	2.4	15
40	DC/DC Power Converter Control-Based Deep Machine Learning Techniques: Real-Time Implementation. IEEE Transactions on Power Electronics, 2020, 35, 9971-9977.	7.9	82
41	Reliable Power Scheduling of an Emission-Free Ship: Multiobjective Deep Reinforcement Learning. IEEE Transactions on Transportation Electrification, 2020, 6, 832-843.	7.8	60
42	IoT-Based DC/DC Deep Learning Power Converter Control: Real-Time Implementation. IEEE Transactions on Power Electronics, 2020, 35, 13621-13630.	7.9	35
43	Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft Computing, 2019, 23, 5785-5798.	3.6	84
44	A New Adaptive Type-II Fuzzy-Based Deep Reinforcement Learning Control: Fuel Cell Air-Feed Sensors Control. IEEE Sensors Journal, 2019, 19, 9081-9089.	4.7	41
45	Real-Time Cellular Wireless Sensor Testbed for Frequency Regulation in Smart Grids. IEEE Sensors Journal, 2019, 19, 11656-11665.	4.7	15
46	Optimal Non-Integer Sliding Mode Control for Frequency Regulation in Stand-Alone Modern Power Grids. Applied Sciences (Switzerland), 2019, 9, 3411.	2.5	35
47	Robust and Fast Voltage-Source-Converter (VSC) Control for Naval Shipboard Microgrids. IEEE Transactions on Power Electronics, 2019, 34, 8299-8303.	7.9	68
48	Design an optimal fuzzy fractional proportional integral derivative controller with derivative filter for load frequency control in power systems. Transactions of the Institute of Measurement and Control, 2019, 41, 2563-2581.	1.7	85
49	Robust Frequency Regulation in Mobile Microgrids: HIL Implementation. IEEE Systems Journal, 2019, 13, 4281-4291.	4.6	57
50	Supervised control strategy in trajectory tracking for a wheeled mobile robot. IET Collaborative Intelligent Manufacturing, 2019, 1, 3-9.	3.3	21
51	Electric Vehicle Power Propulsion System Control Based on Time-Varying Fractional Calculus: Implementation and Experimental Results. IEEE Transactions on Intelligent Vehicles, 2019, 4, 255-264.	12.7	30
52	A robust intelligent controller-based motion control of a wheeled mobile robot. Transactions of the Institute of Measurement and Control, 0, , 014233122210883.	1.7	1