

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134604/publications.pdf Version: 2024-02-01

		66315	110317
115	5,000	42	64
papers	citations	h-index	g-index
122 all docs	122 docs citations	122 times ranked	4390 citing authors

7uili

#	Article	IF	CITATIONS
1	Bioproduction of Natural Phenethyl Acetate, Phenylacetic Acid, Ethyl Phenylacetate, and Phenethyl Phenylacetate from Renewable Feedstock. ChemSusChem, 2022, 15, .	3.6	11
2	Styrene Oxide Isomerase Catalyzed Meinwald Rearrangement Reaction: Discovery and Application in Single-Step and One-Pot Cascade Reactions. Organic Process Research and Development, 2022, 26, 1960-1970.	1.3	14
3	Facile immobilization of his-tagged Microbacterial esterase on Ni-SBA-15 with enhanced stability for efficient synthesis of key chiral intermediate of d-biotin. Bioprocess and Biosystems Engineering, 2022, 45, 1075-1088.	1.7	1
4	Engineering P450 Monooxygenases for Highly Regioselective and Active <i>p</i> -Hydroxylation of <i>m</i> -Alkylphenols. ACS Catalysis, 2022, 12, 5939-5948.	5.5	14
5	Enzymeâ€Catalyzed Meinwald Rearrangement with an Unusual Regioselective and Stereospecific 1,2â€Methyl Shift. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
6	Highly Enantioselective Hydroxylation of 3-Arylpropanenitriles to Access Chiral β-Hydroxy Nitriles by Engineering of P450pyr Monooxygenase. Organic Process Research and Development, 2022, 26, 2046-2051.	1.3	4
7	Production of fine chemicals from renewable feedstocks through the engineering of artificial enzyme cascades. , 2022, , 261-279.		Ο
8	Biocatalysis: Improving Enzymatic Processes through Protein and Reaction Engineering. Organic Process Research and Development, 2022, 26, 1855-1856.	1.3	0
9	Bioproduction of Enantiopure (<i>R</i>)―and (<i>S</i>)â€2â€Phenylglycinols from Styrenes and Renewable Feedstocks. Advanced Synthesis and Catalysis, 2021, 363, 1892-1903.	2.1	16
10	Recent advances in artificial enzyme cascades for the production of value-added chemicals. Bioresource Technology, 2021, 323, 124551.	4.8	38
11	A secretionâ€based dual fluorescence assay for highâ€throughput screening of alcohol dehydrogenases. Biotechnology and Bioengineering, 2021, 118, 1605-1616.	1.7	5
12	Highâ€Level Production of Phenylacetaldehyde using Fusionâ€Tagged Styrene Oxide Isomerase. Advanced Synthesis and Catalysis, 2021, 363, 1714-1721.	2.1	12
13	Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. Bioresources and Bioprocessing, 2021, 8, .	2.0	14
14	Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 701120.	2.0	5
15	A Simple Biosystem for the High‥ielding Cascade Conversion of Racemic Alcohols to Enantiopure Amines. Angewandte Chemie - International Edition, 2020, 59, 21745-21751.	7.2	29
16	A Simple Biosystem for the High‥ielding Cascade Conversion of Racemic Alcohols to Enantiopure Amines. Angewandte Chemie, 2020, 132, 21929-21935.	1.6	6
17	Remodeling enzyme active sites by stepwise loop insertion. Methods in Enzymology, 2020, 643, 111-127.	0.4	2
18	Benzoic acid production via cascade biotransformation and coupled fermentationâ€biotransformation. Biotechnology and Bioengineering, 2020, 117, 2340-2350.	1.7	21

#	Article	IF	CITATIONS
19	Enzyme engineering for enantioselective biotransformations. , 2020, , 145-167.		1
20	Biocatalysis for cascade reactions to produce high-value chemicals. , 2020, , 427-447.		3
21	Cascade bio-hydroxylation and dehalogenation for one-pot enantioselective synthesis of optically active β-halohydrins from halohydrocarbons. Green Chemistry, 2019, 21, 4324-4328.	4.6	28
22	<i>De Novo</i> Biosynthesis of (<i>S</i>)- and (<i>R</i>)-Phenylethanediol in Yeast <i>via</i> Artificial Enzyme Cascades. ACS Synthetic Biology, 2019, 8, 1801-1808.	1.9	12
23	Biocatalytic selective functionalisation of alkenes <i>via</i> single-step and one-pot multi-step reactions. Chemical Communications, 2019, 55, 883-896.	2.2	58
24	Whole Cellâ€Based Cascade Biotransformation for the Production of (<i>S</i>)â€Mandelic Acid from Styrene, <i>L</i> â€Phenylalanine, Glucose, or Glycerol. Advanced Synthesis and Catalysis, 2019, 361, 3560-3568.	2.1	26
25	Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cellâ€free system. Biotechnology and Bioengineering, 2019, 116, 536-542.	1.7	28
26	Oneâ€Pot Production of Natural 2â€Phenylethanol from <i>L</i> â€Phenylalanine via Cascade Biotransformations. ChemCatChem, 2019, 11, 831-840.	1.8	33
27	Whole ell Cascade Biotransformations for Oneâ€Pot Multistep Organic Synthesis. ChemCatChem, 2018, 10, 2164-2178.	1.8	97
28	Recent advances in enzymatic oxidation of alcohols. Current Opinion in Chemical Biology, 2018, 43, 77-86.	2.8	72
29	Bioproduction of Benzylamine from Renewable Feedstocks via a Nineâ€Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. ChemSusChem, 2018, 11, 2221-2228.	3.6	28
30	Amide Synthesis via Aminolysis of Ester or Acid with an Intracellular Lipase. ACS Catalysis, 2018, 8, 8856-8865.	5.5	51
31	Facile Synthesis of <i>S</i> â€Substituted Lâ€Cysteines with Nanoâ€sized Immobilized <i>O</i> â€Acetylserine Sulfhydrylase. ChemCatChem, 2018, 10, 3671-3674.	1.8	7
32	Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease. Bioresource Technology, 2017, 245, 1491-1497.	4.8	63
33	Regio―and Stereoselective Oxidation of Styrene Derivatives to Arylalkanoic Acids <i>via</i> Oneâ€Pot Cascade Biotransformations. Advanced Synthesis and Catalysis, 2017, 359, 2132-2141.	2.1	40
34	Coupled Immobilized Amine Dehydrogenase and Glucose Dehydrogenase for Asymmetric Synthesis of Amines by Reductive Amination with Cofactor Recycling. ChemCatChem, 2017, 9, 425-431.	1.8	42
35	Oneâ€Pot Enantioselective Synthesis of <scp>d</scp> â€Phenylglycines from Racemic Mandelic Acids, Styrenes, or Biobased <scp>l</scp> â€Phenylalanine <i>via</i> Cascade Biocatalysis. Advanced Synthesis and Catalysis, 2017, 359, 4305-4316.	2.1	38
	Front Cover Picture: Oneâ€Pot Enantioselective Synthesis of <scp>d</scp> â€Phenylglycines from Racemic		

Mandelic Acids, Styrenes, or Biobased <scp>l</scp>a€Phenylalanine <i>via</i>
Cascade Biocatalysis (Adv.) Tj ETQqQ.0 0 rgBT2/Overlock

#	Article	IF	CITATIONS
37	Biocatalytic Formal Anti-Markovnikov Hydroamination and Hydration of Aryl Alkenes. ACS Catalysis, 2017, 7, 5225-5233.	5.5	70
38	Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Applied Microbiology and Biotechnology, 2017, 101, 1857-1868.	1.7	21
39	Immobilization of O-acetylserine sulfhydrylase as a highly active and recyclable nanobiocatalyst: efficient synthesis of β-pyrazol-1-yl- <scp>l</scp> -alanine. Catalysis Science and Technology, 2016, 6, 6286-6293.	2.1	10
40	Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased <scp>l</scp> â€Phenylalanine to Highâ€Value Chiral Chemicals. Angewandte Chemie - International Edition, 2016, 55, 11647-11650.	7.2	69
41	High-yielding, one-pot, and green production of biodiesel from waste grease using wet cells of a recombinant Escherichia coli strain as catalyst. Biochemical Engineering Journal, 2016, 115, 30-37.	1.8	8
42	Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased <scp>l</scp> â€Phenylalanine to Highâ€Value Chiral Chemicals. Angewandte Chemie, 2016, 128, 11819-11822.	1.6	30
43	Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis. Nature Communications, 2016, 7, 11917.	5.8	142
44	Organic Synthesis via Oxidative Cascade Biocatalysis. Synlett, 2016, 27, 2644-2658.	1.0	18
45	Engineering of Amine Dehydrogenase for Asymmetric Reductive Amination of Ketone by Evolving <i>Rhodococcus</i> Phenylalanine Dehydrogenase. ACS Catalysis, 2015, 5, 1119-1122.	5.5	127
46	Simple and Efficient Immobilization of Extracellular His-Tagged Enzyme Directly from Cell Culture Supernatant As Active and Recyclable Nanobiocatalyst: High-Performance Production of Biodiesel from Waste Grease. ACS Catalysis, 2015, 5, 3157-3161.	5.5	68
47	Encapsulation of enzyme via oneâ€step templateâ€free formation of stable organic–inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability. Biotechnology and Bioengineering, 2015, 112, 1092-1101.	1.7	28
48	Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations. Chimia, 2015, 69, 136.	0.3	13
49	Temperature-responsive nanobiocatalysts with an upper critical solution temperature for high performance biotransformation and easy catalyst recycling: efficient hydrolysis of cellulose to glucose. Green Chemistry, 2015, 17, 1194-1203.	4.6	44
50	Evolving P450pyr monooxygenase for highly regioselective terminal hydroxylation of n-butanol to 1,4-butanediol. Chemical Communications, 2015, 51, 914-917.	2.2	28
51	Enantioselective Cascade Biocatalysis via Epoxide Hydrolysis and Alcohol Oxidation: One-Pot Synthesis of (<i>R</i>)-α-Hydroxy Ketones from <i>Meso</i> or Racemic Epoxides. ACS Catalysis, 2015, 5, 51-58.	5.5	61
52	Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochemical Engineering Journal, 2014, 83, 16-21.	1.8	46
53	Engineering of P450pyr Hydroxylase for the Highly Regio―and Enantioselective Subterminal Hydroxylation of Alkanes. Angewandte Chemie - International Edition, 2014, 53, 3120-3124.	7.2	77
54	Enantioselective trans-Dihydroxylation of Aryl Olefins by Cascade Biocatalysis with Recombinant <i>Escherichia coli</i> Coexpressing Monooxygenase and Epoxide Hydrolase. ACS Catalysis, 2014, 4, 409-420.	5.5	93

#	Article	IF	CITATIONS
55	Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification. Green Chemistry, 2014, 16, 1202.	4.6	92
56	Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization. Journal of Materials Chemistry A, 2014, 2, 1672-1676.	5.2	34
57	Enoyl acyl carrier protein reductase (Fabl) catalyzed asymmetric reduction of the Cî€C double bond of α,β-unsaturated ketones: preparation of (R)-2-alkyl-cyclopentanones. Chemical Communications, 2014, 50, 9729-9732.	2.2	16
58	Asymmetric epoxidation of alkenes and benzylic hydroxylation with P450tol monooxygenase from Rhodococcus coprophilus TC-2. Chemical Communications, 2014, 50, 8771.	2.2	49
59	Enhancing Enantioselectivity and Productivity of P450-Catalyzed Asymmetric Sulfoxidation with an Aqueous/Ionic Liquid Biphasic System. ACS Catalysis, 2014, 4, 3763-3771.	5.5	37
60	Stereoselective oxidation of sulfides to optically active sulfoxides with resting cells of Pseudomonas monteilii CCTCC M2013683. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 100-104.	1.8	26
61	Rücktitelbild: Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes (Angew. Chem. 12/2014). Angewandte Chemie, 2014, 126, 3348-3348.	1.6	0
62	Cascade Biotransformations via Enantioselective Reduction, Oxidation, and Hydrolysis: Preparation of (<i>R</i>)-Î-Lactones from 2-Alkylidenecyclopentanones. ACS Catalysis, 2013, 3, 908-911.	5.5	37
63	Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase. Biotechnology Letters, 2013, 35, 779-783.	1.1	3
64	Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans J12. Applied Microbiology and Biotechnology, 2013, 97, 4831-4838.	1.7	39
65	Engineered P450pyr monooxygenase for asymmetric epoxidation of alkenes with unique and high enantioselectivity. Chemical Communications, 2013, 49, 11572.	2.2	47
66	Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology, 2013, 132, 38-44.	4.8	82
67	Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm empty fruit bunch by Enterobacter sp. FDS8. Biochemical Engineering Journal, 2013, 72, 77-82.	1.8	50
68	Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresource Technology, 2013, 145, 233-239.	4.8	64
69	Enantioselective Hydrolysis of Racemic and <i>Meso</i> -Epoxides with Recombinant <i>Escherichia coli</i> Expressing Epoxide Hydrolase from <i>Sphingomonas</i> sp. HXN-200: Preparation of Epoxides and Vicinal Diols in High <i>ee</i> and High Concentration. ACS Catalysis, 2013, 3, 752-759.	5.5	69
70	Enantioselective Biooxidation of Racemic <i>trans</i> â€Cyclic Vicinal Diols: Oneâ€Pot Synthesis of Both Enantiopure (<i>S</i> , <i>S</i>)â€Cyclic Vicinal Diols and (<i>R</i>)â€Î±â€Hydroxy Ketones. Advanced Synthesis and Catalysis, 2013, 355, 3147-3153.	2.1	29
71	Engineering of recombinant <i>E. coli</i> cells coâ€expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio―and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnology and Bioengineering, 2013, 110, 363-373.	1.7	34
72	Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom. Chemical Communications, 2012, 48, 4618.	2.2	61

#	Article	IF	CITATIONS
73	Synthesis and characterization of elastic star shape-memory polymers as self-expandable drug-eluting stents. Journal of Materials Chemistry, 2012, 22, 7403.	6.7	47
74	Highly active, stable, and recyclable magnetic nano-size solid acid catalysts: efficient esterification of free fatty acid in grease to produce biodiesel. Green Chemistry, 2012, 14, 3077.	4.6	69
75	Efficient production of biodiesel from waste grease: One-pot esterification and transesterification with tandem lipases. Bioresource Technology, 2012, 123, 332-337.	4.8	77
76	Reversible clustering of magnetic nanobiocatalysts for high-performance biocatalysis and easy catalyst recycling. Chemical Communications, 2012, 48, 4585.	2.2	35
77	Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chemical Engineering Journal, 2012, 181-182, 636-642.	6.6	62
78	Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresource Technology, 2012, 114, 725-729.	4.8	48
79	Concurrent oxidations with tandem biocatalysts in one pot: green, selective and clean oxidations of methylene groups to ketones. Chemical Communications, 2011, 47, 3284.	2.2	21
80	Asymmetric trans-dihydroxylation of cyclic olefins by enzymatic or chemo-enzymatic sequential epoxidation and hydrolysis in one-pot. Green Chemistry, 2011, 13, 2452.	4.6	23
81	Facile fabrication of recyclable and active nanobiocatalyst: purification and immobilization of enzyme in one pot with Ni-NTA functionalized magnetic nanoparticle. Chemical Communications, 2011, 47, 8115.	2.2	50
82	Regio- and Stereoselective Concurrent Oxidations with Whole Cell Biocatalyst: Simple and Green Syntheses of Enantiopure 1,2-Diols via Oxidative Kinetic Resolution. ACS Catalysis, 2011, 1, 591-596.	5.5	16
83	Regio―and Stereoselective Biohydroxylations with a Recombinant <i>Escherichia coli</i> Expressing P450 _{pyr} Monooxygenase of <i>Sphingomonas</i> Sp. HXNâ€200. Advanced Synthesis and Catalysis, 2010, 352, 3380-3390.	2.1	21
84	Highâ€Throughput Method for Determining the Enantioselectivity of Enzymeâ€Catalyzed Hydroxylations Based on Mass Spectrometry. Angewandte Chemie - International Edition, 2010, 49, 5278-5283.	7.2	44
85	Inverting the enantioselectivity of P450pyr monooxygenase by directed evolution. Chemical Communications, 2010, 46, 5461.	2.2	82
86	Bioreduction with Efficient Recycling of NADPH by Coupled Permeabilized Microorganisms. Applied and Environmental Microbiology, 2009, 75, 687-694.	1.4	42
87	Regio―and Stereoselective Allylic Hydroxylation of <scp>D</scp> ‣imonene to (+)â€ <i>trans</i> â€Carveol with <i>Cellulosimicrobium cellulans</i> EBâ€8â€4. Advanced Synthesis and Catalysis, 2009, 351, 1849-1856.	2.1	22
88	Enantioselective Benzylic Hydroxylation with <i>Pseudomonas monteilii</i> TAâ€5: A Simple Method for the Syntheses of (<i>R</i>)â€Benzylic Alcohols Containing Reactive Functional Groups. Advanced Synthesis and Catalysis, 2009, 351, 2107-2112.	2.1	32
89	Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 2009, 45, 195-202.	1.6	68
90	Enantioselective benzylic hydroxylation of indan and tetralin with Pseudomonas monteilii TA-5. Tetrahedron: Asymmetry, 2009, 20, 1206-1211.	1.8	18

#	Article	IF	CITATIONS
91	Asymmetric dihydroxylation of aryl olefins by sequential enantioselective epoxidation and regioselective hydrolysis with tandem biocatalysts. Chemical Communications, 2009, , 1481.	2.2	51
92	Recyclable Nanobiocatalyst for Enantioselective Sulfoxidation: Facile Fabrication and High Performance of Chloroperoxidase-Coated Magnetic Nanoparticles with Iron Oxide Core and Polymer Shell. Journal of the American Chemical Society, 2009, 131, 12892-12893.	6.6	160
93	Efficient epoxidation of alkenes with hydrogen peroxide, lactone, and lipase. Green Chemistry, 2009, 11, 2047.	4.6	41
94	Preparation of (S)-2-, 3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. Tetrahedron: Asymmetry, 2008, 19, 407-415.	1.8	29
95	Coupling of permeabilized microorganisms for efficient enantioselective reduction of ketone with cofactor recycling. Chemical Communications, 2006, , 398-400.	2.2	38
96	Cytochrome P450 Alkane Hydroxylases of the CYP153 Family Are Common in Alkane-Degrading Eubacteria Lacking Integral Membrane Alkane Hydroxylases. Applied and Environmental Microbiology, 2006, 72, 59-65.	1.4	294
97	Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron: Asymmetry, 2006, 17, 47-52.	1.8	38
98	Efficient NADPH Recycling in Enantioselective Bioreduction of a Ketone with Permeabilized Cells of a Microorganism Containing a Ketoreductase and a Glucose 6-Phosphate Dehydrogenase. Advanced Synthesis and Catalysis, 2006, 348, 429-433.	2.1	43
99	High-Throughput Measurement of the Enantiomeric Excess of Chiral Alcohols by Using Two Enzymes. Angewandte Chemie - International Edition, 2004, 43, 1698-1702.	7.2	41
100	Rapid identification of new bacterial alcohol dehydrogenases for (R)- and (S)-enantioselective reduction of ß-ketoesters. Chemical Communications, 2004, , 2120-2121.	2.2	23
101	Chemical and Enzymatic Synthetic Methods for Asymmetric Oxidation of the C–C Double Bond. Biocatalysis and Biotransformation, 2004, 22, 113-131.	1.1	26
102	Recent Advances in Regio- and Stereoselective Biohydroxylation of Non- Activated Carbon Atoms. Current Organic Chemistry, 2004, 8, 1647-1658.	0.9	39
103	Enantioselective Trans Dihydroxylation of Nonactivated Câ^C Double Bonds of Aliphatic Heterocycles withSphingomonassp. HXN-200. Journal of Organic Chemistry, 2003, 68, 8599-8606.	1.7	35
104	Highly enantioselective hydrolysis of alicyclic meso-epoxides with a bacterial epoxide hydrolase from Sphingomonas sp. HXN-200: simple syntheses of alicyclic vicinal trans-diols. Chemical Communications, 2003, , 960-961.	2.2	35
105	Synthesis and Characterization of Novel Thermoplastic Polyester Containing Blocks of Poly[(R)-3-hydroxyoctanoate] and Poly[(R)-3-hydroxybutyrate]. Macromolecules, 2003, 36, 9830-9835.	2.2	30
106	Synthesis and Characterization of Novel Copoly(esterâ^'urethane) Containing Blocks of Poly-[(R)-3-hydroxyoctanoate] and Poly-[(R)-3-hydroxybutyrate]. Macromolecules, 2002, 35, 4946-4950.	2.2	36
107	Practical Syntheses of N-Substituted 3-Hydroxyazetidines and 4-Hydroxypiperidines by Hydroxylation with Sphingomonassp. HXN-200. Organic Letters, 2002, 4, 1859-1862.	2.4	60
108	Regio- and stereoselective hydroxylation of N-substituted piperidin-2-ones with Sphingomonas sp. HXN-200. Tetrahedron: Asymmetry, 2002, 13, 2141-2147.	1.8	31

#	ARTICLE	IF	CITATIONS
109	Enzyme technology: an overview. Current Opinion in Biotechnology, 2002, 13, 338-344.	3.3	241
110	Oxidative biotransformations using oxygenases. Current Opinion in Chemical Biology, 2002, 6, 136-144.	2.8	146
111	Preparation of (R)- and (S)-N-Protected 3-Hydroxypyrrolidines by Hydroxylation withSphingomonassp. HXN-200, a Highly Active, Regio- and Stereoselective, and Easy to Handle Biocatalyst. Journal of Organic Chemistry, 2001, 66, 8424-8430.	1.7	73
112	Preparation of (S)-N-Substituted 4-Hydroxy-pyrrolidin-2-ones by Regio- and Stereoselective Hydroxylation withSphingomonassp. HXN-200. Organic Letters, 2000, 2, 3949-3952.	2.4	46
113	Preparation of optically active N-benzyl-3-hydroxypyrrolidine by enzymatic hydroxylation. Tetrahedron: Asymmetry, 1999, 10, 1323-1333.	1.8	50
114	Production of Natural 2-Phenylethanol from Glucose or Glycerol with Coupled <i>Escherichia coli</i> Strains Expressing <scp>l</scp> -Phenylalanine Biosynthesis Pathway and Artificial Biocascades. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	10
115	Enzymeâ€Catalyzed Meinwald Rearrangement with an Unusual Regioselective and Stereospecific 1,2‑Methyl Shift. Angewandte Chemie, 0, , .	1.6	3