Jean-Marie Delaisse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significance of Reversal-Resorption Phase in Bone Loss. , 2022, , 101-110.		1
2	Alendronate prolongs the reversal-resorption phase in human cortical bone remodeling. Bone, 2022, 160, 116419.	1.4	4
3	Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Seminars in Cell and Developmental Biology, 2021, 112, 8-15.	2.3	29
4	The Mechanism Switching the Osteoclast From Short to Long Duration Bone Resorption. Frontiers in Cell and Developmental Biology, 2021, 9, 644503.	1.8	20
5	Human hematopoietic microenvironments. PLoS ONE, 2021, 16, e0250081.	1.1	6
6	Bisphosphonates impair the onset of bone formation at remodeling sites. Bone, 2021, 145, 115850.	1.4	31
7	The generation of enlarged eroded pores upon existing intracortical canals is a major contributor to endocortical trabecularization. Bone, 2020, 130, 115127.	1.4	13
8	Fusion Potential of Human Osteoclasts In Vitro Reflects Age, Menopause, and In Vivo Bone Resorption Levels of Their Donors—A Possible Involvement of DC-STAMP. International Journal of Molecular Sciences, 2020, 21, 6368.	1.8	27
9	Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone, 2020, 141, 115628.	1.4	76
10	Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products. International Journal of Molecular Sciences, 2020, 21, 5924.	1.8	20
11	Zoledronic Acid Is Not Equally Potent on Osteoclasts Generated From Different Individuals. JBMR Plus, 2020, 4, e10412.	1.3	13
12	Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Research, 2020, 8, 27.	5.4	56
13	Coordination of Fusion and Trafficking of Pre-osteoclasts at the Marrow–Bone Interface. Calcified Tissue International, 2019, 105, 430-445.	1.5	17
14	Catabolic activity of osteoblast-lineage cells contributes to osteoclastic bone resorption in vitro. Journal of Cell Science, 2019, 132, .	1.2	14
15	Innervation is higher above Bone Remodeling Surfaces and in Cortical Pores in Human Bone: Lessons from patients with primary hyperparathyroidism. Scientific Reports, 2019, 9, 5361.	1.6	48
16	A Mild Inhibition of Cathepsin K Paradoxically Stimulates the Resorptive Activity of Osteoclasts in Culture. Calcified Tissue International, 2019, 104, 92-101.	1.5	6
17	Understanding Age-Induced Cortical Porosity in Women: The Accumulation and Coalescence of Eroded Cavities Upon Existing Intracortical Canals Is the Main Contributor. Journal of Bone and Mineral Research, 2018, 33, 606-620.	3.1	54
18	Understanding age-induced cortical porosity in women: Is a negative BMU balance in quiescent osteons a major contributor?. Bone, 2018, 117, 70-82.	1.4	15

JEAN-MARIE DELAISSE

#	Article	IF	CITATIONS
19	Septins are critical regulators of osteoclastic bone resorption. Scientific Reports, 2018, 8, 13016.	1.6	15
20	Intracortical Bone Mechanics Are Related to Pore Morphology and Remodeling in Human Bone. Journal of Bone and Mineral Research, 2018, 33, 2177-2185.	3.1	24
21	Coupling of Bone Resorption and Formation in Real Time: New Knowledge Gained From Human Haversian BMUs. Journal of Bone and Mineral Research, 2017, 32, 1395-1405.	3.1	109
22	Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis. Stem Cell Reports, 2017, 8, 373-386.	2.3	66
23	Time-lapse reveals that osteoclasts can move across the bone surface while resorbing. Journal of Cell Science, 2017, 130, 2026-2035.	1.2	41
24	CRMP4 Inhibits Bone Formation by Negatively Regulating BMP and RhoA Signaling. Journal of Bone and Mineral Research, 2017, 32, 913-926.	3.1	16
25	An Ectosteric Inhibitor of Cathepsin K Inhibits Bone Resorption in Ovariectomized Mice. Journal of Bone and Mineral Research, 2017, 32, 2415-2430.	3.1	36
26	Osteoclast Fusion: Timeâ€Lapse Reveals Involvement of CD47 and Syncytinâ€1 at Different Stages of Nuclearity. Journal of Cellular Physiology, 2017, 232, 1396-1403.	2.0	56
27	A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. British Journal of Pharmacology, 2016, 173, 396-410.	2.7	46
28	Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochemistry and Cell Biology, 2016, 145, 603-615.	0.8	63
29	Pit- and trench-forming osteoclasts: a distinction that matters. Bone Research, 2015, 3, 15032.	5.4	69
30	Highâ€dose therapy improves the bone remodelling compartment canopy coverage and bone formation in multiple myeloma. British Journal of Haematology, 2015, 171, 355-365.	1.2	3
31	The elementary fusion modalities of osteoclasts. Bone, 2015, 73, 181-189.	1.4	48
32	A joined role of canopy and reversal cells in bone remodeling — Lessons from glucocorticoid-induced osteoporosis. Bone, 2015, 73, 16-23.	1.4	49
33	Correlation between Absence of Bone Remodeling Compartment Canopies, Reversal Phase Arrest, and Deficient Bone Formation in Post-Menopausal Osteoporosis. American Journal of Pathology, 2014, 184, 1142-1151.	1.9	36
34	The Bone Resorption Inhibitors Odanacatib and Alendronate Affect Post-Osteoclastic Events Differently in Ovariectomized Rabbits. Calcified Tissue International, 2014, 94, 212-222.	1.5	32
35	A supra-cellular model for coupling of bone resorption to formation during remodeling: lessons from two bone resorption inhibitors affecting bone formation differently. Biochemical and Biophysical Research Communications, 2014, 443, 694-699.	1.0	24
36	The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. BoneKEy Reports, 2014, 3, 561.	2.7	133

JEAN-MARIE DELAISSE

#	Article	IF	CITATIONS
37	Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?. Bone, 2014, 67, 181-188.	1.4	44
38	Osteoclast Fusion is Based on Heterogeneity Between Fusion Partners. Calcified Tissue International, 2014, 95, 73-82.	1.5	51
39	Osteoblast Recruitment Routes in Human Cancellous Bone Remodeling. American Journal of Pathology, 2014, 184, 778-789.	1.9	73
40	Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness. Calcified Tissue International, 2013, 92, 240-250.	1.5	29
41	Steering the osteoclast through the demineralization–collagenolysis balance. Bone, 2013, 56, 191-198.	1.4	37
42	Understanding Coupling between Bone Resorption and Formation. American Journal of Pathology, 2013, 183, 235-246.	1.9	112
43	Increased presence of capillaries next to remodeling sites in adult human cancellous bone. Journal of Bone and Mineral Research, 2013, 28, 574-585.	3.1	91
44	Premature loss of bone remodeling compartment canopies is associated with deficient bone formation: A study of healthy individuals and patients with cushing's syndrome. Journal of Bone and Mineral Research, 2012, 27, 770-780.	3.1	33
45	Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone, 2011, 48, 837-846.	1.4	106
46	OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. Journal of Clinical Investigation, 2011, 121, 3505-3516.	3.9	177
47	Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. Journal of Bone and Mineral Research, 2010, 25, 2184-2192.	3.1	74
48	Myeloma cellâ€induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclastâ€myeloma hybrid cells. British Journal of Haematology, 2010, 148, 551-561.	1.2	72
49	A Physical Mechanism for Coupling Bone Resorption and Formation in Adult Human Bone. American Journal of Pathology, 2009, 174, 239-247.	1.9	267
50	The Chloride Channel Inhibitor NS3736 Prevents Bone Resorption in Ovariectomized Rats Without Changing Bone Formation. Journal of Bone and Mineral Research, 2004, 19, 1144-1153.	3.1	136
51	A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells. Bone, 2004, 35, 1107-1119.	1.4	131
52	Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM). Menopause, 2004, 11, 508-518.	0.8	111
53	Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microscopy Research and Technique, 2003, 61, 504-513.	1.2	272
54	RANKL and Vascular Endothelial Growth Factor (VEGF) Induce Osteoclast Chemotaxis through an ERK1/2-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 48745-48753.	1.6	137

JEAN-MARIE DELAISSE

#	Article	IF	CITATIONS
55	Transforming Growth Factor-β-induced Osteoblast Elongation Regulates Osteoclastic Bone Resorption through a p38 Mitogen-activated Protein Kinase- and Matrix Metalloproteinase-dependent Pathway. Journal of Biological Chemistry, 2001, 276, 39350-39358.	1.6	73
56	Matrix Metalloproteinase 9 and Vascular Endothelial Growth Factor Are Essential for Osteoclast Recruitment into Developing Long Bones. Journal of Cell Biology, 2000, 151, 879-890.	2.3	537
57	Cysteine Proteinases and Matrix Metalloproteinases Play Distinct Roles in the Subosteoclastic Resorption Zone. Journal of Bone and Mineral Research, 1998, 13, 1420-1430.	3.1	111
58	The Collagenolytic Activity of Cathepsin K Is Unique among Mammalian Proteinases. Journal of Biological Chemistry, 1998, 273, 32347-32352.	1.6	543
59	Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. Journal of Cellular Physiology, 1992, 150, 221-231.	2.0	257
60	Spatial Organization of Osteoclastic Coupling Factors and Their Receptors at Human Bone Remodeling Sites. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5