Lin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134388/publications.pdf

Version: 2024-02-01

21 papers	256 citations	1040056 9 h-index	940533 16 g-index
21	21	21	321
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A DFDD Based Detector for Space-Time Block Coded Differential Spatial Modulation Under Time-Selective Channels. IEEE Communications Letters, 2022, 26, 359-363.	4.1	5
2	Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 503-516.	2.6	1
3	Empirical Study on Directional Millimeter-Wave Propagation in Railway Communications Between Train and Trackside. IEEE Journal on Selected Areas in Communications, 2020, 38, 2931-2945.	14.0	12
4	Absolute Amplitude Differential Phase Spatial Modulation and Its Non-Coherent Detection Under Fast Fading Channels. IEEE Transactions on Wireless Communications, 2020, 19, 2742-2755.	9.2	7
5	Measurements and Ray Tracing Simulations for Non-Line-of-Sight Millimeter-Wave Channels in a Confined Corridor Environment. IEEE Access, 2019, 7, 85066-85081.	4.2	15
6	Iterative Clipping Noise Elimination of Clipped and Filtered SCMA-OFDM System. IEEE Access, 2018, 6, 54427-54434.	4.2	11
7	Clipping Noise-Aided Message Passing Algorithm for SCMA-OFDM System. IEEE Communications Letters, 2018, 22, 2156-2159.	4.1	10
8	Iterative Clipping Noise Recovery of OFDM Signals Based on Compressed Sensing. IEEE Transactions on Broadcasting, 2017, 63, 706-713.	3.2	32
9	Low Complexity Detection Based on Dynamic Factor Graph for SCMA Systems. IEEE Communications Letters, 2017, 21, 2666-2669.	4.1	21
10	Low Complexity Message Passing Algorithm for SCMA System. IEEE Communications Letters, 2016, 20, 2466-2469.	4.1	81
11	New Construction Scheme to Reduce the PAPR of M-QAM OFDM Signal. Wireless Personal Communications, 2015, 80, 1217-1230.	2.7	3
12	Swapped SLM scheme for reducing PAPR of OFDM systems. Electronics Letters, 2014, 50, 1608-1609.	1.0	9
13	Optimal phase searching of PTS using modified genetic algorithm for PAPR reduction in OFDM systems. Science China Information Sciences, 2014, 57, 1-11.	4.3	6
14	Cached SLM to reduce the PAPR of OFDM signal. Transactions on Emerging Telecommunications Technologies, 2012, 23, 560-566.	3.9	2
15	Optimised spreading code redistribution PAPR reduction technique for MCâ€CDMA systems. European Transactions on Telecommunications, 2009, 20, 522-530.	1.2	1
16	Selective Vector Perturbation Precoding and Peak to Average Power Ratio Reduction for OFDM Systems. , 2008, , .		5
17	A Low-Complexity Time-Domain Linear Symbol Combining Technique for PAPR Reduction in OFDM Systems. IEEE Transactions on Signal Processing, 2008, 56, 4844-4855.	5.3	22
18	A new PAPR reduction tecnique using time domain symbol scrambling for OFDM systems. , 2007, , .		2

#	Article	IF	CITATIONS
19	Novel low-complexity post-IFFT PAPR reduction technique for OFDM systems. , 2006, , .		2
20	MC-CDMA Specific PAPR Reduction Technique Utilising Spreading Code Redistribution. , 2006, , .		9
21	Power control algorithm in CDMA systems using symmetric successive overrelaxation iteration. European Transactions on Telecommunications, 2005, 16, 583-589.	1.2	0