Denny Mahlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11343097/publications.pdf

Version: 2024-02-01

623734 526287 26 823 14 27 citations g-index h-index papers 27 27 27 1141 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Pharmaceutical profiling and molecular dynamics simulations reveal crystallization effects in amorphous formulations. International Journal of Pharmaceutics, 2022, 613, 121360.	5.2	8
2	Supersaturation Potential of Amorphous Active Pharmaceutical Ingredients after Long-Term Storage. Molecules, 2019, 24, 2731.	3.8	6
3	Long-Term Physical (In)Stability of Spray-Dried Amorphous Drugs: Relationship with Glass-Forming Ability and Physicochemical Properties. Pharmaceutics, 2019, 11, 425.	4.5	14
4	Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways. Journal of Controlled Release, 2017, 256, 193-202.	9.9	63
5	The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharmaceutical Research, 2017, 34, 1754-1772.	3.5	71
6	Production and characterization of aluminium oxide nanoshells on spray dried lactose. International Journal of Pharmaceutics, 2017, 529, 116-122.	5.2	13
7	Powder compression mechanics of spray-dried lactose nanocomposites. International Journal of Pharmaceutics, 2017, 518, 1-10.	5.2	9
8	Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles. Journal of Pharmaceutical Sciences, 2017, 106, 322-330.	3.3	4
9	Structure and Mobility of Lactose in Lactose/Sodium Montmorillonite Nanocomposites. Langmuir, 2016, 32, 13214-13225.	3.5	12
10	Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying. Journal of Pharmaceutical Sciences, 2015, 104, 3760-3769.	3.3	12
11	Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. International Journal of Pharmaceutics, 2015, 495, 312-317.	5.2	75
12	Experimental and Computational Prediction of Glass Transition Temperature of Drugs. Journal of Chemical Information and Modeling, 2014, 54, 3396-3403.	5.4	41
13	Computational Predictions of Glass-Forming Ability and Crystallization Tendency of Drug Molecules. Molecular Pharmaceutics, 2014, 11, 3123-3132.	4.6	79
14	Effects of di- and polysaccharide formulations and storage conditions on survival of freeze-dried Sphingobium sp World Journal of Microbiology and Biotechnology, 2013, 29, 1399-1408.	3.6	12
15	Early drug development predictions of glass-forming ability and physical stability of drugs. European Journal of Pharmaceutical Sciences, 2013, 49, 323-332.	4.0	93
16	Toward <i>In Silico</i> Prediction of Glass-Forming Ability from Molecular Structure Alone: A Screening Tool in Early Drug Development. Molecular Pharmaceutics, 2011, 8, 498-506.	4.6	74
17	Impact of matrix properties on the survival of freezeâ€dried bacteria. Journal of the Science of Food and Agriculture, 2011, 91, 2518-2528.	3.5	28
18	Pharmaceutical micro-particles give amorphous sucrose higher physical stability. International Journal of Pharmaceutics, 2011, 409, 96-103.	5.2	16

#	Article	IF	CITATION
19	Structural effects caused by spray―and freezeâ€drying of liposomes and bilayer disks. Journal of Pharmaceutical Sciences, 2010, 99, 2032-2048.	3.3	45
20	Understanding polymer–lipid solid dispersions—The properties of incorporated lipids govern the crystallisation behaviour of PEG. International Journal of Pharmaceutics, 2010, 386, 61-70.	5.2	20
21	A novel powder sample holder for the determination of glass transition temperatures by DMA. International Journal of Pharmaceutics, 2009, 371, 120-125.	5.2	41
22	Spectral analysis of force fluctuations during probe penetration into cohesive powders. Powder Technology, 2008, 187, 62-67.	4.2	4
23	The influence of PVP incorporation on moisture-induced surface crystallization of amorphous spray-dried lactose particles. International Journal of Pharmaceutics, 2006, 321, 78-85.	5.2	26
24	Influence of polymer molecular weight on the solid-state structure of PEG/monoolein mixtures. Polymer, 2005, 46, 12210-12217.	3.8	7
25	Moisture-Induced Surface Crystallization of Spray-Dried Amorphous Lactose Particles Studied by Atomic Force Microscopy. Journal of Pharmaceutical Sciences, 2004, 93, 29-37.	3.3	41
26	Solid-State Characterization of PEG 4000/Monoolein Mixtures. Macromolecules, 2004, 37, 2665-2667.	4.8	8