
Lokendra Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environmental Science & Technology, 2022, 56, 2071-2095.	4.6	33
2	Creating hierarchically porous banana paper-metal organic framework (MOF) composites with multifunctionality. Applied Materials Today, 2022, 28, 101517.	2.3	2
3	A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse. Carbohydrate Polymers, 2022, 295, 119856.	5.1	19
4	Lignocellulosic Fibers from Renewable Resources Using Green Chemistry for a Circular Economy. Global Challenges, 2021, 5, 2000065.	1.8	19
5	Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, 2021, 4, 140-162.	2.3	139
6	Transparent and high barrier plasma functionalized acrylic coated cellulose triacetate films. Progress in Organic Coatings, 2021, 150, 105988.	1.9	1
7	Study of tobaccoâ€derived proteins in paper coatings. Biopolymers, 2021, 112, e23425.	1.2	1
8	Soft mechanical treatments of recycled fibers using a high-shear homogenizer for tissue and hygiene products. Cellulose, 2021, 28, 7981-7994.	2.4	10
9	Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Industrial Crops and Products, 2021, 168, 113582.	2.5	28
10	Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends in Food Science and Technology, 2021, 115, 461-485.	7.8	122
11	Lignin-containing micro/nanofibrillated cellulose to strengthen recycled fibers for lightweight sustainable packaging solutions. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100135.	1.6	4
12	Innovating Generation of Nanocellulose from Industrial Hemp by Dual Asymmetric Centrifugation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1850-1858.	3.2	32
13	The Topochemistry of Cellulose Nanofibrils as a Function of Mechanical Generation Energy. ACS Sustainable Chemistry and Engineering, 2020, 8, 1471-1478.	3.2	27
14	Sustainable atmospheric-pressure plasma treatment of cellulose triacetate (CTA) films for electronics. Journal of Applied Physics, 2020, 128, 075302.	1.1	3
15	Crude Wood Rosin and Its Derivatives as Hydrophobic Surface Treatment Additives for Paper and Packaging. ACS Omega, 2020, 5, 31559-31566.	1.6	7
16	Comparison between uncreped and creped handsheets on tissue paper properties using a creping simulator unit. Cellulose, 2020, 27, 5981-5999.	2.4	14
17	Lipase-catalyzed laurate esterification of cellulose nanocrystals and their use as reinforcement in PLA composites. Cellulose, 2020, 27, 6263-6273.	2.4	23
18	Tailored Lignocellulose-Based Biodegradable Matrices with Effective Cargo Delivery for Crop Protection. ACS Sustainable Chemistry and Engineering, 2020, 8, 6590-6600.	3.2	12

Lokendra Pal

#	Article	IF	CITATIONS
19	3D Photoinduced Spatiotemporal Resolution of Cellulose-Based Hydrogels for Fabrication of Biomedical Devices. ACS Applied Bio Materials, 2020, 3, 5007-5019.	2.3	10
20	Carboxymethylation of hemicellulose isolated from poplar (Populus grandidentata) and its potential in water-soluble oxygen barrier films. Cellulose, 2020, 27, 3359-3377.	2.4	27
21	Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Carbohydrate Polymers, 2020, 234, 115898.	5.1	45
22	Recent advances in biodegradable matrices for active ingredient release in crop protection: Towards attaining sustainability in agriculture. Current Opinion in Colloid and Interface Science, 2020, 48, 121-136.	3.4	55
23	Ecofriendly and innovative processing of hemp hurds fibers for tissue and towel paper. BioResources, 2020, 15, 706-720.	0.5	27
24	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	0.5	5
25	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	0.5	33
26	Flexible and Pressure-Responsive Sensors from Cellulose Fibers Coated with Multiwalled Carbon Nanotubes. ACS Applied Electronic Materials, 2019, 1, 1179-1188.	2.0	46
27	Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure. Carbohydrate Polymers, 2019, 222, 115013.	5.1	20
28	Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydrate Polymers, 2019, 208, 495-503.	5.1	49
29	High-Strength Antibacterial Chitosan–Cellulose Nanocrystal Composite Tissue Paper. Langmuir, 2019, 35, 104-112.	1.6	51
30	Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydrate Polymers, 2019, 206, 281-288.	5.1	92
31	Nanopolysaccharides in Barrier Composites. Springer Series in Biomaterials Science and Engineering, 2019, , 321-366.	0.7	3
32	Relationship between human perception of softness and instrument measurements. BioResources, 2019, 14, 780-795.	0.5	25
33	Comparison of wood and non-wood market pulps for tissue paper application. BioResources, 2019, 14, 6781-6810.	0.5	28
34	Review of electrically conductive composites and films containing cellulosic fibers or nanocellulose. BioResources, 2019, 14, 7494-7542.	0.5	31
35	Evaluation of paper straws versus plastic straws: Development of a methodology for testing and understanding challenges for paper straws. BioResources, 2019, 14, 8345-8363.	0.5	23
36	Citrus-based hydrocolloids: A water retention aid and rheology modifier for paper coatings. Tappi Journal, 2019, 18, 443-450.	0.2	1

Lokendra Pal

#	Article	IF	CITATIONS
37	High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose, 2018, 25, 3377-3391.	2.4	39
38	Custom tailoring of conductive ink/substrate properties for increased thin film deposition of poly(dimethylsiloxane) films. Journal of Materials Science: Materials in Electronics, 2018, 29, 10461-10470.	1.1	7
39	Understanding the Effect of Machine Technology and Cellulosic Fibers on Tissue Properties – A Review. BioResources, 2018, 13, .	0.5	39
40	Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites – A review. Carbohydrate Polymers, 2018, 198, 249-260.	5.1	137
41	Performance and sustainability vs. the shelf price of tissue paper kitchen towels. BioResources, 2018, 13, 6868-6892.	0.5	17
42	Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk. Tappi Journal, 2018, 17, 395-403.	0.2	13
43	Production of polyhydroxyalkanoates (PHA)-based renewable packaging materials using photonic energy: A bench and pilot-scale study. Tappi Journal, 2018, 17, 557-565.	0.2	3
44	Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of <scp>CNC</scp> Manufacturing. Biofuels, Bioproducts and Biorefining, 2017, 11, 682-700.	1.9	91
45	Cover Image, Volume 11, Issue 4. Biofuels, Bioproducts and Biorefining, 2017, 11, i-i.	1.9	0
46	Soy Proteins As a Sustainable Solution to Strengthen Recycled Paper and Reduce Deposition of Hydrophobic Contaminants in Papermaking: A Bench and Pilot-Plant Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 7211-7219.	3.2	22
47	Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 2017, 95, 574-582.	2.5	268
48	Paper Need Not Be Flat: Paper and Biomaterials Industries Need to Converge to Bring about True Innovation. BioResources, 2017, 12, 2249-2251.	0.5	3
49	Rheology of nanocellulose-rich aqueous suspensions: A Review. BioResources, 2017, 12, 9556-9661.	0.5	196
50	Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources, 2016, 12, 2143-2233.	0.5	189
51	High barrier sustainable co-polymerized coatings. Journal of Coatings Technology Research, 2008, 5, 479-489.	1.2	7
52	Wrap-and-plant technology to manage sustainably potato cyst nematodes in East Africa. Nature Sustainability, 0, , .	11.5	5
53	Evidence for antimicrobial activity in hemp hurds and lignin-containing nanofibrillated cellulose materials. Cellulose, 0, , .	2.4	1