
Huanian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	1,458
2	Passively mode-locked Er-doped fiber laser based on SnS_2 nanosheets as a saturable absorber. Photonics Research, 2018, 6, 72.	7.0	228
3	Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Optics Express, 2018, 26, 9017.	3.4	152
4	Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics, 2020, 9, 2783-2795.	6.0	149
5	Passively Q-switched erbium-doped fiber laser based on SnS_2 saturable absorber. Optical Materials Express, 2017, 7, 3934.	3.0	100
6	Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion. Nanophotonics, 2020, 9, 4295-4306.	6.0	100
7	Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi ₂ Se ₃ as saturable absorber. Optical Materials Express, 2019, 9, 373.	3.0	94
8	Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 2020, 9, 2557-2567.	6.0	91
9	Nonlinear photoresponse of high damage threshold titanium disulfide nanocrystals for Q-switched pulse generation. Optics and Laser Technology, 2022, 151, 107988.	4.6	79
10	Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 11  μm region. Optics Letters, 2016, 41, 1150.	3.3	76
11	Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials, 2020, 10, 1922.	4.1	66
12	Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics, 2022, 11, 1261-1284.	6.0	65
13	Harmonic and fundamental-frequency mode-locked operations in an Er-doped fiber laser using a Cr ₂ Si ₂ Te ₆ -based saturable absorber. Optical Materials Express, 2022, 12, 166.	3.0	53
14	Passively Q-switched and mode-locked erbium-doped fiber lasers based on tellurene nanosheets as saturable absorber. Optics Express, 2020, 28, 14729.	3.4	44
15	Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber. Optics Express, 2019, 27, 24670.	3.4	42
16	2D graphdiyne: an excellent ultraviolet nonlinear absorption material. Nanoscale, 2020, 12, 6243-6249.	5.6	40
17	Nonlinear absorption properties of indium selenide and its application for demonstrating pulsed Er-doped fiber laser. Laser Physics Letters, 2018, 15, 105101.	1.4	30
18	Versatile Mode-Locked Operations in an Er-Doped Fiber Laser with a Film-Type Indium Tin Oxide Saturable Absorber. Nanomaterials, 2019, 9, 701.	4.1	30

HUANIAN ZHANG

#	Article	IF	CITATIONS
19	Nonlinear saturable absorption properties of indium selenide and its application for demonstrating a Yb-doped mode-locked fiber laser. Optical Materials Express, 2018, 8, 3092.	3.0	30
20	Improved Laser Damage Threshold of In2Se3 Saturable Absorber by PVD for High-Power Mode-Locked Er-Doped Fiber Laser. Nanomaterials, 2019, 9, 1216.	4.1	28
21	Nonlinear optical properties of ferromagnetic insulator Cr ₂ Ge ₂ Te ₆ and its application for demonstrating pulsed fiber laser. Applied Physics Express, 2019, 12, 082006.	2.4	27
22	Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers. Optical Materials, 2018, 78, 432-437.	3.6	25
23	Q-Switched Erbium-doped Fiber Laser Based on Silicon Nanosheets as Saturable Absorber. Optik, 2020, 202, 163692.	2.9	23
24	Ferromagnetic insulator Cr2Ge2Te6 as a modulator for generating near-infrared bright-dark soliton pairs. Applied Optics, 2019, 58, 9217.	1.8	23
25	Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi ₂ Te ₃ saturable absorber. Optical Materials Express, 2019, 9, 3535.	3.0	22
26	Conventional solitons and bound-state solitons in an erbium-doped fiber laser mode-locked by TiSe ₂ -based saturable absorber. Nanotechnology, 2020, 31, 365202.	2.6	21
27	Nonlinear optical absorption properties of zirconium selenide in generating dark soliton and dark-bright soliton pairs. Applied Optics, 2020, 59, 396.	1.8	21
28	Various large-energy soliton operations within an Er-doped fiber laser with bismuth selenide as a saturable absorber. Applied Optics, 2018, 57, 8811.	1.8	21
29	Preparation of high-damage threshold WS2 modulator and its application for generating high-power large-energy bright-dark solitons. Infrared Physics and Technology, 2020, 105, 103257.	2.9	20
30	High-power passively Q-switched Yb-doped fiber laser based on Tin selenide as a saturable absorber. Laser Physics, 2018, 28, 085105.	1.2	19
31	Few-layer TaSe ₂ as a saturable absorber for passively Q-switched erbium-doped fiber lasers. Optical Materials Express, 2021, 11, 385.	3.0	18
32	Ultrathin 2D Nonlayered Tellurene Nanosheets as Saturable Absorber for Picosecond Pulse Generation in All-Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	2.9	18
33	High-efficiency passively Q-switched neodymium-doped fiber laser operation at 1360.61 nm with bismuth selenide as saturable absorber. Laser Physics, 2018, 28, 125801.	1.2	15
34	Few-layer silicene nanosheets as saturable absorber for subpicosecond pulse generation in all-fiber laser. Optics and Laser Technology, 2020, 131, 106397.	4.6	12
35	CVD-Bi ₂ Te ₃ as a saturable absorber for various solitons in a mode-locked Er-doped fiber laser. Applied Optics, 2020, 59, 7792.	1.8	12
36	Passively mode-locked Er-doped fiber laser based on a ferromagnetic insulator Cr ₂ Si ₂ Te ₆ as a saturable absorber. Applied Optics, 2022, 61, 898.	1.8	12

HUANIAN ZHANG

#	Article	IF	CITATIONS
37	Nonlinear Optical Properties of Zirconium Diselenide and Its Ultra-Fast Modulator Application. Nanomaterials, 2019, 9, 1419.	4.1	11
38	Review of pulse compression gratings for chirped pulse amplification system. Optical Engineering, 2021, 60, .	1.0	11
39	170 mW-level mode-locked Er-doped fiber laser oscillator based on nonlinear polarization rotation. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	10
40	Bi2Se3/mica optical modulator for high-energy mode-locked Er-doped fiber laser. Infrared Physics and Technology, 2020, 111, 103453.	2.9	10
41	Large-energy mode-locked ytterbium-doped linear-cavity fiber laser based on chemical vapor deposition-Bi2Se3 as a saturable absorber. Applied Optics, 2019, 58, 2695.	1.8	10
42	Noise-like mode-locked Yb-doped fiber laser in a linear cavity based on SnS2 nanosheets as a saturable absorber. Applied Optics, 2019, 58, 6007.	1.8	10
43	Efficient Saturable Absorber Based on Ferromagnetic Insulator Cr2Ge2Te6 in Er-Doped Mode-Locked Fiber Laser. Nanomaterials, 2022, 12, 751.	4.1	9
44	Demonstration of passively Q-switched and mode-locked operations through dispersion control in Er-doped fiber lasers with a cylindrite-based saturable absorber. Journal of Luminescence, 2022, 250, 119064.	3.1	9
45	High-efficiency eye-safe Nd:YAG/SrWO4 Raman laser operating at 1664Ânm. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	8
46	High-Power Large-Energy Rectangular Mode-Locked Er-Doped Fiber Laser Based on High-Damage-Threshold MoS ₂ Saturable Absorber. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	8
47	Traditional soliton erbium-doped fiber laser with InSe as saturable absorber. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 325-333.	2.6	8
48	ZrSe ₂ nanosheet as saturable absorber for soliton operations within an Er-doped passive mode-locked fiber laser. Applied Optics, 2020, 59, 7484.	1.8	8
49	Generation of high-energy rectangular pulses in a nonlinear polarization rotation mode-locked ring fiber laser. Applied Optics, 2019, 58, 7897.	1.8	8
50	Passively mode-locked dual-wavelength Er-doped fiber laser based on antimony tin oxide as saturable absorber. Laser Physics, 2019, 29, 045801.	1.2	7
51	Large-energy mode-locked Er-doped fiber laser based Cr2Si2Te6 as a modulator. Infrared Physics and Technology, 2021, 119, 103941.	2.9	7
52	Review of passive polarimetric dehazing methods. Optical Engineering, 2021, 60, .	1.0	6
53	Generation of Q-switched-mode-locked operations in Er-doped fiber laser based on dispersion compensating fiber saturable absorber. Journal of Luminescence, 2021, 234, 117966.	3.1	6
54	Single- and dual-wavelength noise-like pulses generation in a Nd-doped all-fiber ring laser based on nonlinear polarization rotation. Infrared Physics and Technology, 2021, 116, 103744.	2.9	6

HUANIAN ZHANG

#	Article	IF	CITATIONS
55	Q-switched dissipative soliton resonance operation in GeTe based fiber laser. Infrared Physics and Technology, 2021, 116, 103806.	2.9	6
56	Generation of single-,dual-wavelength mode-locked operations based on ZrSe2 as saturable absorber in an Er-doped fiber laser. Infrared Physics and Technology, 2021, 116, 103775.	2.9	6
57	High Power and Large-Energy Pulse Generation in an Erbium-Doped Fiber Laser by a Ferromagnetic Insulator-Cr2Si2Te6 Saturable Absorber. Nanomaterials, 2022, 12, 564.	4.1	6
58	Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 756-766.	2.6	5
59	High-Power Large-Energy Raman Soliton Generations Within a Mode-Locked Yb-Doped Fiber Laser Based on High-Damage-Threshold CVD-MoS2 as Modulator. Nanomaterials, 2019, 9, 1305.	4.1	4
60	Tin monoselenide based saturable absorbers for the generation of ultrashort pulses. Infrared Physics and Technology, 2020, 108, 103349.	2.9	4
61	Demonstration of high-stable self-mode-locking pulses based on self-focusing in fiber lasers. Infrared Physics and Technology, 2022, 125, 104244.	2.9	4
62	Observation of the dispersion effect of SnS2 nanosheets in all-normal-dispersion Yb-doped mode-locked fiber laser. Infrared Physics and Technology, 2019, 102, 102982.	2.9	3
63	Nonlinear optical properties of ferromagnetic insulator Cr2Ge2Te6 and its application for passively Q-switched Er-doped fiber laser. Photonics and Nanostructures - Fundamentals and Applications, 2022, 50, 101028.	2.0	3
64	Investigations of mode-locked Er-doped oscillators with record high-pulse energies. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	2
65	Generation of bright-dark soliton pairs based on a ferromagnetic insulator Cr ₂ Si ₂ Te ₆ as a modulator in an Er-doped fiber laser. Applied Optics, 2022, 61, 3254.	1.8	1
66	Third-order harmonic mode-locked and Q-switched Er-doped fiber laser based on a Cr2Ge2Te6 saturable absorber. Applied Optics, 0, , .	1.8	1
67	Bright-dark-bright soliton generation in erbium-doped fiber laser based on Pb3Sn4FeSb2S14 saturable absorber. Optical Fiber Technology, 2022, 71, 102904.	2.7	1
68	Mode-locked fiber laser based on Pb3Sn4FeSb2S14 saturable absorber. Optical Fiber Technology, 2022, 72, 102951.	2.7	1
69	Bright Soliton and Bright–Dark Soliton Pair in an Er-Doped Fiber Laser Mode-Locked Based on In2Se3 Saturable Absorber. Frontiers in Physics, 2021, 9, .	2.1	0
70	Multi-element two-dimensional compounds Pb3Sn4FeSb2S14 as saturable absorber to demonstrate large-energy mode-locked pulse generations. Optik, 2022, , 169411.	2.9	0