

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11341326/publications.pdf Version: 2024-02-01

DAN YE

#	Article	IF	CITATIONS
1	Preferred crystallographic orientation of cellulose in plant primary cell walls. Nature Communications, 2020, 11, 4720.	12.8	41
2	Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes. ACS Nano, 2019, 13, 8292-8302.	14.6	37
3	Aluminum oxide free-standing thin films to enable nitrogen edge soft x-ray scattering. MRS Communications, 2019, 9, 224-228.	1.8	6
4	TGFβ1â€induced expression of caldesmon mediates epithelial–mesenchymal transition. Cytoskeleton, 2018, 75, 201-212.	2.0	10
5	Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 2018, 209, 179-191.	3.2	15
6	Resonant Soft X-Ray Scattering Provides Protein Structure with Chemical Specificity. Structure, 2018, 26, 1513-1521.e3.	3.3	10
7	Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydrate Polymers, 2018, 197, 337-348.	10.2	34
8	Probing the Internal Microstructure of Polyamide Thin-Film Composite Membranes Using Resonant Soft X-ray Scattering. ACS Macro Letters, 2018, 7, 927-932.	4.8	21
9	Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls. Scientific Reports, 2018, 8, 12449.	3.3	26
10	Progress and Opportunities in the Characterization of Cellulose – An Important Regulator of Cell	3.6	155

Wall Growth and Mechanics. Frontiers in Plant Science, 2018, 9, 1894.