Endu Sekhar Srinadhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134087/publications.pdf

Version: 2024-02-01

623734 642732 28 544 14 23 citations g-index h-index papers 30 30 30 483 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Use of Surfactants in Acoustic Cleaning. , 2022, , 193-226.		1
2	Enhanced ionic conductivity of electrospun nanocomposite (PVDFâ€HFP + TiO 2 nanofibers fillers) polymer fibrous membrane electrolyte for DSSC application. Polymer Composites, 2019, 40, 1585-1594.	4.6	101
3	Electrospun Nanocomposite Ag–ZnO Nanofibrous Photoanode for Better Performance of Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2019, 48, 4389-4399.	2.2	11
4	Fundamentals and Applications of Plasma Cleaning. , 2019, , 289-353.		8
5	Structural, electrical, and dielectric properties of nickel-doped spinel LiMn2O4 nanorods. Ionics, 2019, 25, 981-990.	2.4	15
6	A novel electrospun cobalt-doped zinc oxide nanofibers as photoanode for dye-sensitized solar cell. Materials Research Express, 2019, 6, 025041.	1.6	17
7	High conducting nanocomposite electrospun PVDF-HFP/ \$\$hbox {TiO}_{2}\$\$ TiO 2 quasi-solid electrolyte for dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 1199-1213.	2.2	23
8	Development of novel mechanically stable porous nanocomposite (PVDF-PMMA/HAp/TiO2) film scaffold with nanowhiskers surface morphology for bone repair applications. Materials Letters, 2019, 236, 694-696.	2.6	16
9	The effects of multicharged ion irradiation on a polycarbonate surface. Radiation Effects and Defects in Solids, 2019, 174, 205-213.	1.2	9
10	Conductivity and dielectric permittivity studies of Klâ€based nanocomposite (PEO/PMMA/KI/I ₂ /ZnO nanorods) polymer solid electrolytes. Polymer Composites, 2019, 40, 2919-2928.	4.6	26
11	β-PVDF based electrospun nanofibers – A promising material for developing cardiac patches. Medical Hypotheses, 2019, 122, 31-34.	1.5	37
12	Shape transitions of Cu3Si islands grown on Si(1 1 1) and Si(1 0 0). Applied Surface Science, 2019, 465, 201-206.	6.1	7
13	Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review. Reviews of Adhesion and Adhesives, 2019, 7, 169-194.	3.4	3
14	Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
15	Electrospun Sn–SnO2/C composite nanofibers as an anode material for lithium battery applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 11117-11123.	2.2	15
16	Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications. Ceramics International, 2018, 44, 201-207.	4.8	38
17	Surfactant-free microwave-hydrothermal synthesis of SnO2 flower-like structures as an anode material for lithium-ion batteries. Materialia, 2018, 4, 276-281.	2.7	14
18	Structural and Optical Studies of ZnO Nanostructures Synthesized by Rapid Microwave Assisted Hydrothermal and Solvothermal Methods. Transactions of the Indian Ceramic Society, 2018, 77, 169-174.	1.0	8

#	Article	IF	CITATIONS
19	Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 14723-14732.	2.2	15
20	High Capacity Electrospun MgFe ₂ O ₄ –C Composite Nanofibers as an Anode Material for Lithium Ion Batteries. ChemistrySelect, 2018, 3, 8010-8017.	1.5	19
21	Scalable novel PVDF based nanocomposite foam for direct blood contact and cardiac patch applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 270-280.	3.1	14
22	Structural, electrical and dielectric properties of nanocrystalline LiMgBO3 particles synthesized by Pechini process. Journal of Alloys and Compounds, 2017, 718, 459-470.	5 . 5	19
23	Synthesis, characterization and electrical properties of mesoporous nanocrystalline CoFe2O4 as a negative electrode material for lithium battery applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 17208-17214.	2.2	12
24	Symbiotic organism search algorithm for simulation of J-V characteristics and optimizing internal parameters of DSSC developed using electrospun TiO2 nanofibers. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	12
25	Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceramics International, 2016, 42, 16789-16797.	4.8	42
26	First multicharged ion irradiation results from the CUEBIT facility at Clemson University. AIP Conference Proceedings, 2015, , .	0.4	14
27	Encapsulating Ion-Solid Interactions in Metal-Oxide-Semiconductor (MOS) Devices. IEEE Transactions on Nuclear Science, 2015, 62, 3346-3352.	2.0	8
28	Magnetic modulation in mechanical alloyed Cr1.4Fe0.6O3oxide. PMC Physics B, 2008, 1, .	0.9	33